STAT 8810 Assignment 1

Due: September 13th, 2017

	Team Member	Team Member	Team Member
team 1	1	8	
team 2	7	6	
team 3	9	4	
team 4	2	5	3

Question 1

Write a function to generate an unconditional realization of a Gaussian Process with Gaussian correlation function in p-dimensions where the observations are located on a equally space grid of $N=n^p$ locations. Generate a realization in dimension p=2 at $N=30^2$ locations.

Question 2

- (a) Plot the theoretical variograms for the Gaussian, exponential and spherical models and summarize any important differences.
- (b) Generate a GP realization using the Gaussian model at N=100 locations in 2-D and fit the Gaussian and Exponential variogram models to the data. Perform the same exercise for a GP realization generated using the Exponential model.

Question 3

Suppose the process $Z(x), x \in \mathbb{R}^2$ is a GP with Gaussian correlation function, mean zero and constant variance σ^2 . Derive the covariance formulas for $Cov(Z(x), Z_1(x'))$ and $Cov(Z_1(x), Z_2(x'))$, where $Z_1(x) = \frac{\partial}{\partial x_1} Z(x)$ and $Z_2(x) = \frac{\partial}{\partial x_2} Z(x)$. Write a function to generate a 1-D unconditional realization of a Gaussian Process and its first derivative using the Gaussian correlation model. Verify the derivative numerically by performing a finite-differences approximation of the derivative from a realization of the process using $Z'(a) \approx \frac{Z(a+h)-Z(a)}{h}$.

Question 4

Consider the correlation function

$$\rho(h) = \begin{cases} 1 - \frac{||h||}{\phi}, ||h|| \le \phi \\ 0, \text{ otherwise} \end{cases}$$

This is a valid correlation function in 1-D. Show it is not valid in 2-D. Hint: Consider points s_{ij} at a 6×8 grid of size $\frac{\phi}{\sqrt{2}}$. Look at $\text{Var}\left(\sum_{i,j} a_{ij} Z(s_{ij})\right)$ where $a_{ij} = 1$ if i+j is even and $a_{ij} = -1$ otherwise.

Question 5

Consider a stationary random field z(s) for $s \in D \subseteq \mathbb{R}^2$ observed at sites s_1, \ldots, s_n .

- (a) Derive the unbiased linear predictor with smallest variance.
- (b) Prove that your predictor interpolates the observed data.
- (c) Prove that the squared prediction error of your interpolator is zero at the observed data locations.