
Gaussian Process Regression and Emulation
STAT8810, Fall 2017

M.T. Pratola

August 28, 2017





Today

More on GP Regression



Constructing Correlation Functions

• How can we systematically construct valid correlation
functions?

Theorem: (Bochner)

If f (ω) is any p.d.f. on Rd that is symmetric about the origin
(zero), then,

R(h) =
∫
ω

cos(hTω)f (ω)dω

is a valid correlation function.



Example

• d = 1, χ ⊆ R1.

• f (ω) is taken to be the Uniform(−1
θ ,

1
θ ) density.

• then

R(h) =
∫ 1/θ

−1/θ

θ

2cos(hω)dω =
{

sin(h/θ), h 6= 0
1, h = 0

Note: R(−h) = sin(−h)/θ
−h/θ = −θsin(h/θ)

−h/θ = R(h) as required, since
sin(·) is an odd function.



Example: Gaussian Correlation
• d = 1, χ ⊆ R1.

• f (ω) is taken to be N(0, 2
θ2 ), θ > 0.

R(h) =
∫ ∞
−∞

cos(hω) θ√
2π
√
2

exp
(
− θ2

2(2)ω
2
)

dω

= exp(−h2

θ
)

(Abromowitz and Stegun, 1972, pg.302 eq.7.4.6).
• θ is a scale or length parameter
• as θ →∞ then exp(−h2

θ2 )→ 1 which implies highly correlated
or smoother paths.

• This is called the Gaussian, or squared exponential, correlation
function.



Alternative form of Gaussian Correlation

• An alternative parameterization is exp(−θh2) where now θ is
intepreted as a roughness parameter since θ →∞ implies
exp(−θh2)→ 0.

• ρh2 (i.e. ρ = exp(−θ)) where one thinks of ρ as correlation
scale since 0 ≤ ρ ≤ 1 and h2 = 1 implies
Cor(Z (x),Z (x + h)) = ρ.

• A GP with Gaussian correlation function is a continuous and
infinitely differentiable process.



Example: Power Exponential Correlation
• d = 1, χ ⊆ R1.

• R(h) = exp(−θ||h||p), 0 < p ≤ 2.
• if p = 2: Gaussian correlation function
• if p = 1: Z (x) is Ohrenstein-Uhlenbeck process - continuous,

nowhere differentiable
• R(0) = 1,R(−h) = R(h) (easy)
• Harder to show non-negative definite property
• For 0 < p < 2, R(h) is continuous at h = 0 but is not

differentiable at h = 0, and process is continuous but nowhere
differentiable:

R ′(h) =
{
− θhppexp(−θhp)

h , h > 0
+ θhppexp(−θhp)

h , h < 0

(where limh→0−R ′(h) 6= limh→0+R ′(h)).



Example: Matern Correlation

• d = 1, χ ⊆ R1.

• f (ω|ν, θ) is taken to be tν/θ, θ > 0, ν ∈ {1, 2, 3, . . .}.

R(h) = 1
2ν−1Γ(ν)

(√
2ν|h|
θ

)ν
Kν
(√

2ν|h|
θ

)
, h ∈ R1.

• Kν is called the modified Bessel function of order ν.
• Kν(x) is the solution of x2y ′′(x) + xy ′(x)− (x2 + ν2)y(x) = 0.



Example: Matern Correlation

• K1/2(x) = exp(−x)
√
π 1√

2x ⇒ R(h) = exp(− |h|θ )(p = 1).
• For n ∈ {1, 2, . . .},

Kn+1/2(x) = exp(−x)
√
π

2x

∞∑
k=0

(n + k)!
k!(n − k)!

( 1
2x

)k

• Fact: R(h|ν, θ)→ exp(− |h|
2

2θ2 ) as ν →∞. That is, Matern
correlation becomes the Gaussian correlation in the limit.



Example: Matern Correlation

• Typically the Matern is used with specific settings of ν which
greatly simplify it’s computation:

• ν = 1
2 : R(h) = exp(− |h|θ )

• ν = 3
2 : R(h) =

(
1 +

√
3|h|
θ

)
exp(−

√
3|h|
θ )

• ν = 5
2 : R(h) =

(
1 +

√
5|h|
θ + 5|h|2

3θ2

)
exp(−

√
5|h|
θ )

• Realizations are almost surely dνe − 1 times differentiable



Example: Cubic Correlation

• d = 1, χ ∈ R1. Fix θ > 0.

R(h|θ) =


1− 6(h

θ )2 + 6( |h|θ )3, |h| ≤ θ
2†

2(1− |h|θ )3, θ2 < |h| < θ

0, |h| > θ.

† (i.e. −1
2 ≤

h
θ ≤

1
2)

• This means that when x1, x2 are a distance greater than θ
apart, Z (x1),Z (x2) are uncorrelated. Indeed, since we are using
GP’s, they are independent.

• Realizations are continuous and differentiable.



Simulating Draws from a GP

• Suppose Z = (Z1, . . . ,Zn)T are i.i.d. Normal with mean 0 and
variance 1.

• Suppose L is an n × n lower-triangular matrix of real numbers
of full rank and µ is an n × 1 vector of real numbers.

• Then Y = (Y1, . . . ,Yn)T = LZ + µ has a MVN distribution
with mean µ and covariance matrix Σ = LLT .

• Check:

E [Y] = E [LZ + µ] = µ

Cov(Y) = E [(Lz + µ− µ)(LZ + µ− µ)]
= E [LZZT LT ]
= LInLT

= LLT



Simulating Draws from a GP

To generate samples from a realization of a GP, we work backwards:

1. Form the n × n covariance matrix Σ = cov(Y) according to
your desired variance and desired correlation function c(·).

2. Find L. LLT = Σ1/2Σ1/2 = Σ so take L = chol(Σ).
3. Generate Z ∼ N(0, In) from a random number generator.
4. Calculate Y = LZ + µ. Then Y is a vector of observations

taken from a realization of a GP with the desired (constant)
mean function µ and desired correlation function c(·).



1D Example

set.seed(88)
n=25
x=seq(0,1,length=n)
X=abs(outer(x,x,"-"))
rho=0.1
R=rho^(X^2)
L=t(chol(R+diag(n)*.Machine$double.eps*100))
mu=0
Z=rnorm(n,mean=0,sd=1)
Y=L%*%Z+mu



1D Example
plot(x,Y,xlab="x",ylab="Y(x)",type='b',lwd=2,pch=20)
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1D Example

m=10
Ymat=matrix(0,nrow=m,ncol=n)
for(i in 1:m) {

Z=rnorm(n,mean=0,sd=1)
Ymat[i,]=L%*%Z+mu

}



1D Example
plot(x,Ymat[1,],xlab="x",ylab="Y(x)",type='b',

lwd=2,pch=20,ylim=range(Ymat))
for(i in 2:m) lines(x,Ymat[i,],col=i,lwd=2)
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1D Example
set.seed(88)
rho=1e-4
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Forming Valid Covariance or Correlation Functions

• Assume ci (h),Ri (h) are valid correlation functions (symmetric,
non-negative definite, R(0) = 1.)

1. c(h) = c1(h) + c2(h) is a valid covariance function

Eg: if Z1 ∼ N(0, c1(h)) and Z2 ∼ N(0, c2(h)) and Z1 ⊥ Z2 then for
Z = Z1 + Z2, Cov(Z ) is c1(h) + c2(h).



Forming Valid Covariance or Correlation Functions
• Assume ci (h),Ri (h) are valid correlation functions (symmetric,

non-negative definite, R(0) = 1.)

2. c(h) = c1(h)c2(h) is a valid covariance function and
R(h) = R1(h)R2(h) is a valid correlation function.

Eg: if Z1,Z2 are independent with mean 0 and variance σ2 then
Z (x) = Z1(x)Z2(x) has mean
E [Z1(x)Z2(x)] = E [Z1(x)]E [Z2(x)] = 0 and

Cov(Z (x),Z (x + h)) = Cov(Z1(x)Z2(x),Z1(x + h)Z2(x + h))
= E [Z1(x)Z1(x + h)Z2(x)Z2(x + h)− 0]
= E [Z1(x)Z1(x + h)]E [Z2(x)Z2(x + h)](indep.)
= c1(h)c2(h)



Forming Valid Covariance or Correlation Functions

• Assume ci (h),Ri (h) are valid covariance or correlation
functions (symmetric, non-negative definite, R(0) = 1.)

3. If 0 < α < 1, c(h) = αc1(h) + (1− α)c2(h) is a valid
covariance function, and R(h) = αR(h) + (1− α)R(h) is a
valid covariance function.

Similarly, for α1, . . . , αn where αi ≥ 0 and
∑

i αi = 1 then
c(h) =

∑
i αici (h) is a valid covariance function and

R(h) =
∑

i αiRi (h) is a valid correlation function.



Forming Valid Covariance or Correlation Functions

• Assume ci (h),Ri (h) are valid correlation functions (symmetric,
non-negative definite, R(0) = 1.)

4. If {R(h; θ)}θ∈Θ are valid, or {c(h; θ)}θ∈Θ are valid and π(θ) is
a p.d.f., then

c(h) =
∫
θ

c(h; θ)π(θ)dθ

and
R(h) =

∫
θ

R(h; θ)π(θ)dθ

are valid.



Forming Valid Covariance or Correlation Functions

• Assume ci (h),Ri (h) are valid correlation functions (symmetric,
non-negative definite, R(0) = 1.)

5. A correlation function is said to be separable if

R(h) =
d∏

i=1
Ri (h).

A popular choice is the separable Gaussian model,

R(h) =
d∏

i=1
exp(−θih2

i )

where hi = ||xi − x ′i || and x = (x1, . . . , xd ).



2D Example

set.seed(88)
n=25
x=as.matrix(expand.grid(seq(0,1,length=n),

seq(0,1,length=n)))
X=abs(outer(x[,1],x[,1],"-"))
rho=0.3
R=rho^(X^2)
X=abs(outer(x[,2],x[,2],"-"))
rho=1e-15
R=R*rho^(X^2)
L=t(chol(R+diag(n^2)*.Machine$double.eps*100))
mu=0
Z=rnorm(n^2,mean=0,sd=1)
Y=L%*%Z+mu



2D Example

Figure 1:



Kronecker Product Covariances

• Often in emulation problems, the computer code output may
be calculated on a regular grid:

X=as.matrix(expand.grid(seq(0,1,length=25),
seq(0,1,length=25)))

dim(X)

## [1] 625 2

• This is obviously problematic: here the number of “pixels”
making up our output are growing like 25d .



Kronecker Product Covariances
plot(X,pch=20,xlab="x1",ylab="x2")
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Kronecker Product Covariances
• Such cases can be simplified using the Kronecker product.

set.seed(88)
n=25
x1=seq(0,1,length=n)
x2=seq(0,1,length=n)

X1=abs(outer(x1,x1,"-"))
rho=0.3
R1=rho^(X1^2)
X2=abs(outer(x2,x2,"-"))
rho=1e-15
R2=rho^(X2^2)
RR=R2%x%R1 #kronecker product
sum(abs(RR-R))

## [1] 0



Kronecker Product Covariances

LL=t(chol(R2+diag(n)*.Machine$double.eps*100))%x%
t(chol(R1+diag(n)*.Machine$double.eps*100))

mu=0
Z=rnorm(n^2,mean=0,sd=1)
Y=LL%*%Z+mu

par3d(cex=0.5)
persp3d(matrix(Y,n,n),col="grey",xlab="x1",ylab="x2",

zlab="Y",box=FALSE)
plot3d(x[,1],x[,2],Y,col="black",type='s',radius=0.01,

add=TRUE)
rgl.snapshot("kronecker.png")



Kronecker Product Covariances

Figure 2:



Kronecker Product Covariances

• Other properites that may be useful:
• A⊗ (B + C) = A⊗ B + A⊗ C
• A⊗ B 6= B ⊗ A (in general)
• A⊗ (B ⊗ C) = (A⊗ B)⊗ C
• αA⊗ βB = αβ(A⊗ B)
• (A⊗ B)T = AT ⊗ BT

• (A⊗ B)(C ⊗ D) = AC ⊗ BD
• (A⊗ B)−1 = A−1 ⊗ B−1

• rank(A⊗ B) = rank(A)rank(B)
• det(A⊗ B) = det(A)rank(B)det(B)rank(A)



Kronecker Product Covariances

• Using this trick is one way to getting around manipulating and
storing large correlation matrices so that we can use the GP
model on moderately sized datasets.

• We will see some other tricks later.
• These tricks really only get us so far.


