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Today

More on GP Regression



Constructing Correlation Functions

= How can we systematically construct valid correlation
functions?

Theorem: (Bochner)

If f(w) is any p.d.f. on RY that is symmetric about the origin
(zero), then,

R(h) = /w cos(hTw)f(w)duw

is a valid correlation function.



Example

= d=1,x CRL
= f(w) is taken to be the Uniform(—%, 1) density.

= then

—cos(hw)d
1/6 2 1, h=0

B /1/9 Y {sin(h/@), h+#0

Note: R(—h) = sin( h%/e _eiiz%/e) = R(h) as required, since

sin(-) is an odd function.



Example: Gaussian Correlation

L] d:l,XgRl
= f(w) is taken to be N(O, %) 0> 0.

00 92
R(h) = / cos( hw exp —w2 dw
" ) J5e v ( 202) )
—h?
= enl)
(Abromowitz and Stegun, 1972, pg.302 eq.7.4.6).
= @ is a scale or length parameter

= as  — oo then exp(—j ) — 1 which implies highly correlated
or smoother paths.

= This is called the Gaussian, or squared exponential, correlation
function.



Alternative form of Gaussian Correlation

An alternative parameterization is exp(—6h?) where now 0 is
intepreted as a roughness parameter since § — oo implies
exp(—0h?) — 0.

P (i.e. p = exp(—0)) where one thinks of p as correlation

scale since 0 < p < 1 and h*> = 1 implies

Cor(Z(x),Z(x + h)) = p.

A GP with Gaussian correlation function is a continuous and
infinitely differentiable process.



Example: Power Exponential Correlation

d=1,x CRL
R(h) = exp(—0][|h[|P),0 < p < 2.
if p=2: Gaussian correlation function

if p=1: Z(x) is Ohrenstein-Uhlenbeck process - continuous,
nowhere differentiable

R(0) =1, R(—h) = R(h) (easy)
Harder to show non-negative definite property

For 0 < p < 2, R(h) is continuous at h = 0 but is not
differentiable at h = 0, and process is continuous but nowhere
differentiable:

OhP pexp(—0OhP
Rl(h): - ppe l/)7( p)’h>0
+9h pex;l>7(—9h )’ h<0

(where limy,_,o- R'(h) # limy_,o+ R'(h)).



Example: Matern Correlation

d=1,x CRL
f(wl|v,0) is taken to be t, /5, 6 > 0,v € {1,2,3,...}.

R(h) = 2v11r(y) (‘/?h'> Ky (‘/?hg ,heR

K, is called the modified Bessel function of order v.
K, (x) is the solution of x2y”(x) + xy’(x) — (x* + )y (x) = 0.



Example: Matern Correlation

= Kija(x) = exp(—x)vT = = R(h) = exp(— ) (p = 1).
= Forne{l1,2,...},

(n+ k)! k
Kny1/2(x) = exp(—=x)4/ 5= X Z K(n ()

= Fact: R(h|v,0) — exp(— ggz) as v — 0o. That is, Matern

correlation becomes the Gaussian correlation in the limit.



Example: Matern Correlation

Typically the Matern is used with specific settings of v which
greatly simplify it's computation:

h
v="1:R(h) = exp(— 2]

2
% : R(h) = (1 + \/2’4) exp(——\/%w)

2
: R(h) = (1 + 7\/“2“7' + 53|g|2) exp(——‘/?hl)

Realizations are almost surely [v] — 1 times differentiable
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Example: Cubic Correlation
= d=1,x€R! Fix6>0.

1-6(3) +6(3)% || < 5t
R(h|0) = 2(1— 123 8 < |p| < 0
0,|h| > 0.

T (ie. —

< )

= This means that when xj, xo are a distance greater than 6
apart, Z(x1), Z(x2) are uncorrelated. Indeed, since we are using
GP's, they are independent.

Sl
N—=

<

N

= Realizations are continuous and differentiable.



Simulating Draws from a GP

Suppose Z = (Z1,...,Z,)" are i.id. Normal with mean 0 and
variance 1.

Suppose L is an n x n lower-triangular matrix of real numbers
of full rank and g is an n x 1 vector of real numbers.

Then Y = (Y4,...,Y,)T =LZ + 1 has a MVN distribution
with mean y and covariance matrix ¥ = LL”.

Check:
ElY] = ELZ+pl=p
Cov(Y) = E[(Lz+p— p)(LZ + p— p)]
= E[LZZTLT]
= L,LT

= LLT



Simulating Draws from a GP

To generate samples from a realization of a GP, we work backwards:

1.

Form the n x n covariance matrix ¥ = cov(Y) according to
your desired variance and desired correlation function c(-).

Find L. LLT = ¥1/251/2 = ¥ 50 take L = chol(X).
Generate Z ~ N(0,1,) from a random number generator.

Calculate Y = LZ 4 u. Then Y is a vector of observations
taken from a realization of a GP with the desired (constant)
mean function u and desired correlation function c(+).



1D Example

set.seed(88)

n=25

x=seq(0,1,length=n)

X=abs (outer(x,x,"-"))

rho=0.1

R=rho~ (X~2)

L=t (chol (R+diag(n)*.Machine$double.eps*100))
mu=0

Z=rnorm(n,mean=0,sd=1)
Y=L%*Y%Z+mu




1D Example

plot(x,Y,xlab="x",ylab="Y(x)",type='b"',1lwd=2,pch=20)
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1D Example

m=10
Ymat=matrix (0,nrow=m,ncol=n)
for(i in 1:m) {

Z=rnorm(n,mean=0,sd=1)
Ymat [i,]=L%*%Z+mu




1D Example
plot(x,Ymat[1,],xlab="x",ylab="Y(x)",type='b",

1lwd=2,pch=20,ylim=range (Ymat))
for(i in 2:m) lines(x,Ymat[i,],col=i,lwd=2)
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1D Example

set.seed(88)
rho=1e-4
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Forming Valid Covariance or Correlation Functions

= Assume c;(h), Ri(h) are valid correlation functions (symmetric,
non-negative definite, R(0) = 1.)

1. c(h) = ci(h) + c2(h) is a valid covariance function

Eg: if Z1 ~ N(0, ci(h)) and Z> ~ N(0, c2(h)) and Z; L Z, then for
Z =21+ 2, Cov(Z) is c1(h) + ca2(h).



Forming Valid Covariance or Correlation Functions

= Assume c;(h), Ri(h) are valid correlation functions (symmetric,
non-negative definite, R(0) = 1.)

2. c(h) = c1(h)ca(h) is a valid covariance function and
R(h) = Ri(h)Rx(h) is a valid correlation function.

Eg: if Z1, Z> are independent with mean 0 and variance o2 then
Z(x) = Z1(x)Z2(x) has mean
E[Z1(x)Z2(x)] = E[Z1(x)]E[Z2(x)] = 0 and

Cov(Z(x),Z(x+ h)) = Cov(Zi(x)Za2(x), Z1(x + h)Za(x + h))
= E[Zl(X)Zl(X + h)ZQ(X)Z2(X -+ h) — 0]
= E[Zi(x)Zi(x + h)|E[Z2(x)Z2(x + h)](indep.)
= a(h)e(h)



Forming Valid Covariance or Correlation Functions

= Assume c;(h), Ri(h) are valid covariance or correlation
functions (symmetric, non-negative definite, R(0) = 1.)

3. f0<a<1, c(h)=ac(h)+ (1 —a)ec(h)is a valid
covariance function, and R(h) = aR(h) + (1 — «)R(h) is a
valid covariance function.

Similarly, for a1, ..., an where a; > 0 and Y ; a; = 1 then
c(h) = X ajci(h) is a valid covariance function and
R(h) = >_; «;R;i(h) is a valid correlation function.



Forming Valid Covariance or Correlation Functions

= Assume c;(h), Ri(h) are valid correlation functions (symmetric,
non-negative definite, R(0) = 1.)

4. If {R(h;0)}pco are valid, or {c(h; 0)}sco are valid and 7(0) is
a p.d.f., then

qm:édmmﬂmw
and

MM:ARW@M@M

are valid.



Forming Valid Covariance or Correlation Functions

= Assume c;(h), Ri(h) are valid correlation functions (symmetric,
non-negative definite, R(0) = 1.)

5. A correlation function is said to be separable if

A popular choice is the separable Gaussian model,

d
R(h) = H exp(—0;h?)
i=1

where h; = ||x; — x!|| and x = (x1,...,Xq)-



2D Example

set.seed(88)

n=25

x=as.matrix(expand.grid(seq(0,1,length=n),
seq(0,1,length=n)))

X=abs (outer(x[,1],x[,1]1,"-"))

rho=0.3

R=rho~ (X"2)

X=abs (outer(x[,2],x[,2],"-"))

rho=1e-15

R=R*rho”~ (X"2)

L=t (chol (R+diag(n~2)*.Machine$double.eps*100))

mu=0

Z=rnorm(n~2,mean=0,sd=1)

Y=L%*%Z+mu




2D Example




Kronecker Product Covariances

= Often in emulation problems, the computer code output may
be calculated on a regular grid:

X=as.matrix(expand.grid(seq(0,1,length=25),

seq(0,1,length=25)))

dim(X)

## [1] 625 2

= This is obviously problematic: here the number of “pixels”
making up our output are growing like 259,



Kronecker Product Covariances

plot (X,pch=20,xlab="x1",ylab="x2")
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Kronecker Product Covariances

= Such cases can be simplified using the Kronecker product.

set.seed(88)

n=25
x1=seq(0,1,length=n)
x2=seq(0,1,length=n)

X1=abs(outer(x1l,x1,"-"))
rho=0.3

Ri=rho~ (X172)

X2=abs (outer(x2,x2,"-"))
rho=1e-15

R2=rho~ (X272)

RR=R2%x7%R1

sum (abs (RR-R) )




Kronecker Product Covariances

LL=t (chol (R2+diag(n)*.Machine$double.eps*100) ) %x%
t (chol (R1+diag(n)*.Machine$double.eps*100))

mu=0

Z=rnorm(n~2,mean=0,sd=1)

Y=LL%*%Z+mu

par3d(cex=0.5)

persp3d(matrix(Y,n,n),col="grey" ,xlab="x1",ylab="x2",
zlab="Y" ,box=FALSE)

plot3d(x[,1],x[,2],Y,col="black",type="'s',radius=0.01,
add=TRUE)

rgl.snapshot ("kronecker.png")




Kronecker Product Covariances




Kronecker Product Covariances

= Other properites that may be useful:

* AR(B+C)=A®B+A®C

= AQ B# B® A (in general)

s AR(BR(C)=(A®B)® C

* aAR® BB =abf(A® B)

= (A@B)T =AT @ BT

» (A®B)(C®D)=AC®BD

» (AB)t=A1lgB!

= rank(A ® B) = rank(A)rank(B)

» det(A® B) = det(A)"k(B)det(B)rank(4)



Kronecker Product Covariances

Using this trick is one way to getting around manipulating and
storing large correlation matrices so that we can use the GP
model on moderately sized datasets.

We will see some other tricks later.

These tricks really only get us so far.



