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Bayesian prediction (we'll return to this later)
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Frequentist Prediction

We have our data y ~ f where

Ely(x)] = p(x)
and p(x) = p or p(x) = f7(x)B are common choices, and

Cov(y(x), y(x')) = c(x — ).

= A popular class of predictors are linear in the data:
= linear predictor: §(x) =c’y
= unbiased linear predictor: y(x) = c’y s.t. E[y(x)] =
= Best MSPE predictor: ming,) MSPE(§(x) — y(x)) where
MSPE = E |(9(x) - y(x))’
= Best Linear Unbiased Predictor (BLUP): y(
E[y(x)] = p(x) and minci) MSPE(§(x) — y



Frequentist Prediction

= Suppose (y(xo),y)) ~ f whose conditional mean
Ely(xo)|y] := §(xo) exists. Then y(xg) is the best MSPE
predictor.

Proof: Let y(xo) be another predictor of y(xp).

MSPE(y(x0)) = E[(¥(x0) — y(x0))’ly]
— §(x0) + ¥(x0) — y(x0))?Iy]
= E[(y(x0) — 9(x0))|y] + MSPE(9(x0))
+2E [(¥(x0) — §(x0))(9(x0) — ¥ (x0))| y]
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But E[(y(x0) = #(x0))(¥(x0) — y(x0))|y] = 0 since

E [9(x0) — y(x0)ly] = Ely(x0)ly] — Ely(x0)ly] = 0

Therefore, MSPE(y(x0)) = E [(¥(x0) — #(x0))?] + MSPE(y(x0)) >
MSPE(§(xo))-



Frequentist Prediction
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RYi=0,1,...,n.
where fo = (fi(x0), - - -, fo(x0)) ",
F=[fi(xo)], 1<i<nl<j<p,
5 = (51,- . -aﬁp)Ta

ro = (R(XO - X]_), sy R(XO - xn))T7
R=[R(xi—x;)], 1<i,j<n.

= The BLUP of yo = y(xo) is

J(xo) =fg B+ R (y—FB)

where B = (FTRle)*1 FTR-ly.
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BLUP Properties

= §(xp) is linear in y;,i =1, ..., n, so given the weights it is
easy to calculate.
= MSPE of the BLUP is

02 (1=t R0+ (fo — FTR'ro) TFTRIF(fo — FTR'ro))

= 0(1 — variance improvement term

+ penalty since we don't know f3)



BLUP Properties
= Write d = R"!(y — Ff3), then

9(x0) =D fi(x0)Bj + D _ diR(x0 — xi)-
j i=1



BLUP Properties
= Write d = R™1(y — F3), then

y(x0) =D fi(x0)B; + zn: diR(xo — x;).
j i=1

= When xo — x; is large, R(-) is small so less weight is given in
forming the prediction



BLUP Properties
Write d = R~1(y — Ff3), then

y(x0) =D fi(x0)B; + zn: diR(xo — x;).
j i=1

When xo — x; is large, R(+) is small so less weight is given in
forming the prediction

When xg — x; is small, R(-) is large so more weight is given in
forming the prediction



BLUP Properties
Write d = R~1(y — Ff3), then

y(x0) =D fi(x0)B; + zn: diR(xo — x;).
j i=1

When xo — x; is large, R(+) is small so less weight is given in
forming the prediction

When xg — x; is small, R(-) is large so more weight is given in
forming the prediction

If R(h) = exp(—0 ¢, h?) (isotropic model) then

n d

y(xo) = Z fi(x0)Bj + > _ diexp(—0> " (xor — xi1)?)

j i=1 =1

is the so-called “Radial Basis Function” model, popular in
machine learning and elsewhere for awhile.
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BLUP Properties

= y(-) interpolates the observations y1, ..., y,

= MSPE at the observed data yi,...,y, is zero
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Empirical BLUP

The BLUP uses the GLS estimator for 8. But in actuality we

also have parameters 2 and @ (correlation function

parameters) that so far have been assumed known.

Empirical BLUP (EBLUP): use plug-in estimators for 6 and
2

a4(0).

The most common approach uses the MLE.
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= For the GP model, the log-likelihood of the data y is

1 1
= —Zlog(o?) = Slog(IR) = 55y — FB)'R(y — FA).



Empirical BLUP (MLE-based)

= For the GP model, the log-likelihood of the data y is
= —21og(0) — 5log(Rl) — 5y ~ FB) R~y — F)
2 2 202 '

= Taking % and setting equal to 0 we get what we had before:

o~

B(6) = (FTR*lF)*1 FTR 1y

since R depends on 6.
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Empirical BLUP (MLE-based)

. = /(3(0),02,9) = N ~
—2log(0?) — 3log(|R|) — 52z (y — FB) "R~ (y — FB).

= Taking partial wrt 2 and setting equal to zero, we get

Ly —FB)TR Yy~ FB)

n

5%(0)

since R and ,B’ depend on 6.



Empirical BLUP (MLE-based)

- = 1(B(6),6%(6),8) = —5l0g(6%) — 3log(IRI) — 3.



Empirical BLUP (MLE-based)

~

= = 1(B(6),5%(6),0) = —5log(6%) — 3log(|R[) — 5.
= No closed form solution for this, so find 6 by taking the
arg max:

~ 1
6 = arg max — 2 log(5%(6)) — 5 log(IR(6) )



Empirical BLUP (MLE-based)

= Say R=R(:|0), ¥ =r([6) and B = ().



Empirical BLUP (MLE-based)

= Say R=R(:|8), F=r(:|8) and B = B(8).
= Then our EBLUP is

§(x0) = B+T R} (y — FB)
and our Empirical MSPE (EMSPE) of the EBLUP is

P(xo) = X (1-FR '
+(fo — FTR™ %) "FTR™IF(fy — FTR¥)).
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EBLUP Properties

= Still interpolates the data
= 1(B(8),52(8),0) can be very challenging to numerically
maximize.

= straight Newton-Raphson typically unsuccessful
= A combined strategy such as Nelder-Mead with
Newton-Raphson works reasonably well

= Other estimators of 42, 0 are possible:

= REML (Restricted Maximum Likelihood)
= Penalized MLE¢}
= Cross-validation
=« The EMPSE is a point-wise measure of predictive uncertainty,
not a path-wise measure of uncertainty.

= Typically use §(xo) &= 1.963%(xq) for a 95% interval.

t Li and Sudjianto: Analysis of computer experiments using penalized likelihood
in Gaussian Kriging models (2005).
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Restricted /Residual MLE (REML)

Want to produce estimates of o2, 0 that are less biased than
MLE's.

Idea: maximize a REML likelihood

= simply the likelihood of some transformation of the original
data.
= this transformation is usually a linear combination of the data
such that these linear combinations of orthogonal to FS.
Assume F is of full rank (n x p for p < n so rank(F) = p.)
Choose an orthogonal matrix C with rank n— p s.t. CF = 0.
Then, Y = CY ~ N (0, a2CRCT)
And

LREML(O'z,e) 1 exp( (CRC ) )

(27)"2" |o2CRCT| "%




= Y=(n,...

REML: Example

.¥n)T ~ N(185,5°R) and let

1 -1 0
1 0 -1

C= 0 0 -1
1 0 0



= Y=(n,...

« ThenY =

REML: Example

.¥n)T ~ N(185,5°R) and let

1 -1 0 0

1 0 -1 0
C = 0 0o -1

1 0 0 -1
yi—y

yYi—y3

Y1 —Yn



Penalized MLE

= Given some \ > 0, this method finds 02, 0 that maximizes
R d
LP(027 0‘y7 )‘) = L(/B(g)v 027 0|Y) —n Z P)\(ek)
k=1

where B(8) is the usual GLS solution and the penalty py(6)
grows as 6 grows.

1 Fan and Li: Variable selection via nonconcave penalized likelihood and its
oracle properties (2001)
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Penalized MLE

= Given some \ > 0, this method finds 02, 0 that maximizes

d
LP(U27 0‘)’, )‘) = L(B(B), 027 0|Y) —n Z p)x(ek)
k=1

where B(8) is the usual GLS solution and the penalty py(6)
grows as 6 grows.

= Eg:

= pa(0) = A|0] (linear penalty)
= px(0) = \0?/2 (quadratic penalty)
= “smooth clipped absolute deviation”t

= Choose A by cross-validation

1 Fan and Li: Variable selection via nonconcave penalized likelihood and its
oracle properties (2001)
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Cross-Validation Fitting

= Given 6 and y_;(0) := BLUP of y(x;) with correlation 8 based
on the data {x;, y(x;)};2i.

§-i(0) = 7 (x)B(6) + r{ (x)R™*(y—; — FB)

= Choose 0 as

Ocy = arg mgn Z (y(xi) = y—i(xi, 0))2
i=1

and
52, = % (Yn - FBCV) ! R(0cv) (Yn - FBCV)

where Bcy = B(Ocv).



