
Gaussian Process Regression and Emulation
STAT8810, Fall 2017

M.T. Pratola

August 29, 2017





Today

More on GP Regression



Emulating Outputs from a Simulator

• Best Linear Unbiased Predictions (these actually don’t require
the Normality assumption assuming the statistical model’s
parameters are known)

• Frequentist prediction
• Bayesian prediction (we’ll return to this later)
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Frequentist Prediction
We have our data y ∼ f where

E [y(x)] = µ(x)

and µ(x) = µ or µ(x) = fT (x)β are common choices, and

Cov(y(x), y(x′)) = c(x− x′).

• A popular class of predictors are linear in the data:

• linear predictor: ŷ(x) = cT y
• unbiased linear predictor: ŷ(x) = cT y s.t. E [ŷ(x)] = µ(x)
• Best MSPE predictor: minc(x) MSPE(ŷ(x)− y(x)) where

MSPE = E
[
(ŷ(x)− y(x))2

]
• Best Linear Unbiased Predictor (BLUP): ŷ(x) = cT y s.t.

E [ŷ(x)] = µ(x) and minc(x) MSPE(ŷ(x)− y(x)).
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Frequentist Prediction
• Suppose (y(x0), y)) ∼ f whose conditional mean

E [y(x0)|y] := ŷ(x0) exists. Then ŷ(x0) is the best MSPE
predictor.

Proof: Let ỹ(x0) be another predictor of y(x0).

MSPE(ỹ(x0)) = E [(ỹ(x0)− y(x0))2|y]
= E [(ỹ(x0)− ŷ(x0) + ŷ(x0)− y(x0))2|y]
= E [(ỹ(x0)− ŷ(x0))2|y] + MSPE(ŷ(x0))

+2E [(ỹ(x0)− ŷ(x0))(ŷ(x0)− y(x0))| y]

But E [(ỹ(x0)− ŷ(x0))(ŷ(x0)− y(x0))| y] = 0 since
E [ŷ(x0)− y(x0)|y] = E [y(x0)|y]− E [y(x0)|y] = 0

Therefore, MSPE(ỹ(x0)) = E
[
(ỹ(x0)− ŷ(x0))2]+ MSPE(ŷ(x0)) ≥

MSPE(ŷ(x0)).



Frequentist Prediction
• Consider

(
y0
y

)
∼
[(

fT
0
F

)
β, σ2

(
1 rT

0
r0 R

)]
, xi ∈

Rd , i = 0, 1, . . . , n.

where f0 = (f1(x0), . . . , fp(x0))T ,

F = [fj(x0)], 1 ≤ i ≤ n, 1 ≤ j ≤ p,
β = (β1, . . . , βp)T ,

r0 = (R(x0 − x1), . . . ,R(x0 − xn))T ,

R = [R(xi − xj)], 1 ≤ i , j ≤ n.

• The BLUP of y0 = y(x0) is

ŷ(x0) = fT
0 β̂ + rT

0 R−1
(
y− Fβ̂

)
where β̂ =

(
FT R−1F

)−1
FT R−1y.
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BLUP Properties

• ŷ(x0) is linear in yi , i = 1, . . . , n, so given the weights it is
easy to calculate.

• MSPE of the BLUP is

σ2
(
1− rT

0 R−1r0 + (f0 − FT R−1r0)T FT R−1F(f0 − FT R−1r0)
)

= σ2(1− variance improvement term

+ penalty since we don’t know β)
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BLUP Properties
• Write d = R−1(y− Fβ̂), then

ŷ(x0) =
∑

j
fj(x0)β̂j +

n∑
i=1

diR(x0 − xi).

• When x0 − xi is large, R(·) is small so less weight is given in
forming the prediction

• When x0 − xi is small, R(·) is large so more weight is given in
forming the prediction

• If R(h) = exp(−θ
∑d

l=1 h2
l ) (isotropic model) then

ŷ(x0) =
∑

j
fj(x0)β̂j +

n∑
i=1

diexp(−θ
d∑

l=1
(x0l − xil)2)

is the so-called “Radial Basis Function” model, popular in
machine learning and elsewhere for awhile.
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Empirical BLUP

• The BLUP uses the GLS estimator for β. But in actuality we
also have parameters σ2 and θ (correlation function
parameters) that so far have been assumed known.

• Empirical BLUP (EBLUP): use plug-in estimators for θ and
σ2(θ).

• The most common approach uses the MLE.



Empirical BLUP

• The BLUP uses the GLS estimator for β. But in actuality we
also have parameters σ2 and θ (correlation function
parameters) that so far have been assumed known.

• Empirical BLUP (EBLUP): use plug-in estimators for θ and
σ2(θ).

• The most common approach uses the MLE.



Empirical BLUP

• The BLUP uses the GLS estimator for β. But in actuality we
also have parameters σ2 and θ (correlation function
parameters) that so far have been assumed known.

• Empirical BLUP (EBLUP): use plug-in estimators for θ and
σ2(θ).

• The most common approach uses the MLE.



Empirical BLUP (MLE-based)

• For the GP model, the log-likelihood of the data y is

l = −n
2 log(σ2)− 1

2 log(|R|)− 1
2σ2 (y− Fβ)T R−1(y− Fβ).

• Taking ∂l
∂β and setting equal to 0 we get what we had before:

β̂(θ) =
(
FT R−1F

)−1
FT R−1y

since R depends on θ.
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Empirical BLUP (MLE-based)

• ⇒ l(β̂(θ), σ2,θ) =
−n

2 log(σ2)− 1
2 log(|R|)− 1

2σ2 (y− Fβ̂)T R−1(y− Fβ̂).

• Taking partial wrt σ2 and setting equal to zero, we get

σ̂2(θ) = 1
n (y− Fβ̂)T R−1(y− Fβ̂)

since R and β̂ depend on θ.
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Empirical BLUP (MLE-based)

• ⇒ l(β̂(θ), σ̂2(θ),θ) = −n
2 log(σ̂2)− 1

2 log(|R|)− n
2 .

• No closed form solution for this, so find θ̂ by taking the
argmax:

θ̂ = argmax
θ
−n
2 log(σ̂2(θ))− 1

2 log(|R(θ)|)
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Empirical BLUP (MLE-based)

• Say R̂ = R(·|θ̂), r̂ = r(·|θ̂) and β̂ = β̂(θ̂).

• Then our EBLUP is

ŷ(x0) = fT
0 β̂ + r̂T

0 R̂−1(y− Fβ̂)

and our Empirical MSPE (EMSPE) of the EBLUP is

ŝ2(x0) = σ̂2(1− r̂T
0 R̂−1r̂0

+(f0 − FT R̂−1r̂0)T FT R̂−1F(f0 − FT R̂−1r̂0)).



Empirical BLUP (MLE-based)

• Say R̂ = R(·|θ̂), r̂ = r(·|θ̂) and β̂ = β̂(θ̂).
• Then our EBLUP is
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EBLUP Properties
• Still interpolates the data

• l(β̂(θ), σ̂2(θ),θ) can be very challenging to numerically
maximize.

• straight Newton-Raphson typically unsuccessful
• A combined strategy such as Nelder-Mead with

Newton-Raphson works reasonably well

• Other estimators of σ̂2, θ̂ are possible:

• REML (Restricted Maximum Likelihood)
• Penalized MLE†
• Cross-validation

• The EMPSE is a point-wise measure of predictive uncertainty,
not a path-wise measure of uncertainty.

• Typically use ŷ(x0)± 1.96ŝ2(x0) for a 95% interval.

† Li and Sudjianto: Analysis of computer experiments using penalized likelihood
in Gaussian Kriging models (2005).
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• Typically use ŷ(x0)± 1.96ŝ2(x0) for a 95% interval.

† Li and Sudjianto: Analysis of computer experiments using penalized likelihood
in Gaussian Kriging models (2005).



EBLUP Properties
• Still interpolates the data
• l(β̂(θ), σ̂2(θ),θ) can be very challenging to numerically

maximize.
• straight Newton-Raphson typically unsuccessful
• A combined strategy such as Nelder-Mead with

Newton-Raphson works reasonably well

• Other estimators of σ̂2, θ̂ are possible:

• REML (Restricted Maximum Likelihood)
• Penalized MLE†
• Cross-validation

• The EMPSE is a point-wise measure of predictive uncertainty,
not a path-wise measure of uncertainty.
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Restricted/Residual MLE (REML)

• Want to produce estimates of σ2,θ that are less biased than
MLE’s.

• Idea: maximize a REML likelihood

• simply the likelihood of some transformation of the original
data.

• this transformation is usually a linear combination of the data
such that these linear combinations of orthogonal to Fβ.

• Assume F is of full rank (n × p for p ≤ n so rank(F) = p.)
• Choose an orthogonal matrix C with rank n − p s.t. CF = 0.
• Then, Ỹ = CY ∼ N

(
0, σ2CRCT

)
• And

LREML(σ2,θ) = 1
(2π)

n−p
2 |σ2CRCT|−

1
2
exp(− 1

2σ2 ỸT (CRCT )−1Ỹ).
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• Assume F is of full rank (n × p for p ≤ n so rank(F) = p.)

• Choose an orthogonal matrix C with rank n − p s.t. CF = 0.
• Then, Ỹ = CY ∼ N

(
0, σ2CRCT

)
• And

LREML(σ2,θ) = 1
(2π)

n−p
2 |σ2CRCT|−

1
2
exp(− 1

2σ2 ỸT (CRCT )−1Ỹ).
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2σ2 ỸT (CRCT )−1Ỹ).
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REML: Example

• Y = (y1, . . . , yn)T ∼ N(1β0, σ
2R) and let

C =


1 −1 0 . . . 0
1 0 −1 . . . 0
. . . 0 0 −1 . . .
...

...
...

...
...

1 0 . . . 0 −1



• Then Ỹ =


y1 − y2
y1 − y3

...
y1 − yn

 ∼ N
(
0, σ2CRCT

)
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Penalized MLE

• Given some λ > 0, this method finds σ2,θ that maximizes

Lp(σ2,θ|y, λ) = L(β̂(θ), σ2,θ|y)− n
d∑

k=1
pλ(θk)

where β̂(θ) is the usual GLS solution and the penalty pλ(θ)
grows as θ grows.

• Eg:

• pλ(θ) = λ|θ| (linear penalty)
• pλ(θ) = λθ2/2 (quadratic penalty)
• “smooth clipped absolute deviation”†

• Choose λ by cross-validation

† Fan and Li: Variable selection via nonconcave penalized likelihood and its
oracle properties (2001)
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Cross-Validation Fitting

• Given θ and ŷ−i(θ) := BLUP of y(xi) with correlation θ based
on the data {xj , y(xj)}j 6=i ,

ŷ−i(θ) = fT (xi)β̂(θ) + rT
0 (xi)R−1(y−i − Fβ̂)

• Choose θ̂ as

θ̂CV = argmin
θ

n∑
i=1

(y(xi)− ŷ−i(xi ,θ))2

and

σ̂2
cv = 1

n
(
yn − Fβ̂CV

)T
R̂−1(θ̂CV )

(
yn − Fβ̂CV

)
where β̂CV = β̂(θ̂CV ).
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