Gaussian Process Regression and Emulation STAT8810, Fall 2017

M.T. Pratola

August 29, 2017

More on GP Regression

Emulating Outputs from a Simulator

 Best Linear Unbiased Predictions (these actually don't require the Normality assumption assuming the statistical model's parameters are known)

Emulating Outputs from a Simulator

- Best Linear Unbiased Predictions (these actually don't require the Normality assumption assuming the statistical model's parameters are known)
- Frequentist prediction

Emulating Outputs from a Simulator

- Best Linear Unbiased Predictions (these actually don't require the Normality assumption assuming the statistical model's parameters are known)
- Frequentist prediction
- Bayesian prediction (we'll return to this later)

We have our data $\mathbf{y} \sim f$ where

$$E[y(\mathbf{x})] = \mu(\mathbf{x})$$

and $\mu(\mathbf{x}) = \mu$ or $\mu(\mathbf{x}) = \mathbf{f}^{T}(\mathbf{x})\boldsymbol{\beta}$ are common choices, and

$$Cov(y(\mathbf{x}), y(\mathbf{x}')) = c(\mathbf{x} - \mathbf{x}').$$

• A popular class of predictors are linear in the data:

We have our data $\mathbf{y} \sim f$ where

$$E[y(\mathbf{x})] = \mu(\mathbf{x})$$

and $\mu(\mathbf{x}) = \mu$ or $\mu(\mathbf{x}) = \mathbf{f}^T(\mathbf{x})\boldsymbol{\beta}$ are common choices, and

$$Cov(y(\mathbf{x}), y(\mathbf{x}')) = c(\mathbf{x} - \mathbf{x}').$$

- A popular class of predictors are linear in the data:
 - linear predictor: $\hat{y}(\mathbf{x}) = \mathbf{c}^T \mathbf{y}$

We have our data $\mathbf{y} \sim f$ where

$$E[y(\mathbf{x})] = \mu(\mathbf{x})$$

and $\mu(\mathbf{x}) = \mu$ or $\mu(\mathbf{x}) = \mathbf{f}^T(\mathbf{x})\boldsymbol{\beta}$ are common choices, and

$$Cov(y(\mathbf{x}), y(\mathbf{x}')) = c(\mathbf{x} - \mathbf{x}').$$

- A popular class of predictors are linear in the data:
 - linear predictor: $\hat{y}(\mathbf{x}) = \mathbf{c}^T \mathbf{y}$
 - unbiased linear predictor: $\hat{y}(\mathbf{x}) = \mathbf{c}^T \mathbf{y}$ s.t. $E[\hat{y}(\mathbf{x})] = \mu(\mathbf{x})$

We have our data $\mathbf{y} \sim f$ where

$$E[y(\mathbf{x})] = \mu(\mathbf{x})$$

and $\mu(\mathbf{x}) = \mu$ or $\mu(\mathbf{x}) = \mathbf{f}^{T}(\mathbf{x})\boldsymbol{\beta}$ are common choices, and

$$Cov(y(\mathbf{x}), y(\mathbf{x}')) = c(\mathbf{x} - \mathbf{x}').$$

- A popular class of predictors are linear in the data:
 - linear predictor: $\hat{y}(\mathbf{x}) = \mathbf{c}^T \mathbf{y}$
 - unbiased linear predictor: $\hat{y}(\mathbf{x}) = \mathbf{c}^T \mathbf{y}$ s.t. $E[\hat{y}(\mathbf{x})] = \mu(\mathbf{x})$
 - Best MSPE predictor: $\min_{\mathbf{c}(\mathbf{x})} MSPE(\hat{y}(\mathbf{x}) y(\mathbf{x}))$ where $MSPE = E\left[(\hat{y}(\mathbf{x}) - y(\mathbf{x}))^2\right]$

We have our data $\mathbf{y} \sim f$ where

$$E[y(\mathbf{x})] = \mu(\mathbf{x})$$

and $\mu(\mathbf{x}) = \mu$ or $\mu(\mathbf{x}) = \mathbf{f}^{T}(\mathbf{x})\boldsymbol{\beta}$ are common choices, and

$$Cov(y(\mathbf{x}), y(\mathbf{x}')) = c(\mathbf{x} - \mathbf{x}').$$

- A popular class of predictors are linear in the data:
 - linear predictor: $\hat{y}(\mathbf{x}) = \mathbf{c}^T \mathbf{y}$
 - unbiased linear predictor: $\hat{y}(\mathbf{x}) = \mathbf{c}^T \mathbf{y}$ s.t. $E[\hat{y}(\mathbf{x})] = \mu(\mathbf{x})$
 - Best MSPE predictor: $\min_{\mathbf{c}(\mathbf{x})} MSPE(\hat{y}(\mathbf{x}) y(\mathbf{x}))$ where $MSPE = E\left[(\hat{y}(\mathbf{x}) - y(\mathbf{x}))^2 \right]$
 - Best Linear Unbiased Predictor (BLUP): $\hat{y}(\mathbf{x}) = \mathbf{c}^T \mathbf{y}$ s.t. $E[\hat{y}(\mathbf{x})] = \mu(\mathbf{x})$ and $\min_{\mathbf{c}(\mathbf{x})} \mathsf{MSPE}(\hat{y}(\mathbf{x}) - y(\mathbf{x})).$

 Suppose (y(x₀), y)) ~ f whose conditional mean E[y(x₀)|y] := ŷ(x₀) exists. Then ŷ(x₀) is the best MSPE predictor.

Proof: Let $\tilde{y}(\mathbf{x}_0)$ be another predictor of $y(\mathbf{x}_0)$.

$$\begin{aligned} \mathsf{MSPE}(\widetilde{y}(\mathbf{x}_0)) &= E[(\widetilde{y}(\mathbf{x}_0) - y(\mathbf{x}_0))^2 | \mathbf{y}] \\ &= E[(\widetilde{y}(\mathbf{x}_0) - \widehat{y}(\mathbf{x}_0) + \widehat{y}(\mathbf{x}_0) - y(\mathbf{x}_0))^2 | \mathbf{y}] \\ &= E[(\widetilde{y}(\mathbf{x}_0) - \widehat{y}(\mathbf{x}_0))^2 | \mathbf{y}] + \mathsf{MSPE}(\widehat{y}(\mathbf{x}_0)) \\ &+ 2E[(\widetilde{y}(\mathbf{x}_0) - \widehat{y}(\mathbf{x}_0))(\widehat{y}(\mathbf{x}_0) - y(\mathbf{x}_0)) | \mathbf{y}] \end{aligned}$$

But $E[(\tilde{y}(\mathbf{x}_0) - \hat{y}(\mathbf{x}_0))(\hat{y}(\mathbf{x}_0) - y(\mathbf{x}_0))|\mathbf{y}] = 0$ since $E[\hat{y}(\mathbf{x}_0) - y(\mathbf{x}_0)|\mathbf{y}] = E[y(\mathbf{x}_0)|\mathbf{y}] - E[y(\mathbf{x}_0)|\mathbf{y}] = 0$ Therefore, $MSPE(\tilde{y}(\mathbf{x}_0)) = E[(\tilde{y}(\mathbf{x}_0) - \hat{y}(\mathbf{x}_0))^2] + MSPE(\hat{y}(\mathbf{x}_0)) \ge MSPE(\hat{y}(\mathbf{x}_0)).$

Frequentist Prediction
• Consider
$$\begin{pmatrix} y_0 \\ \mathbf{y} \end{pmatrix} \sim \left[\begin{pmatrix} \mathbf{f}_0^T \\ \mathbf{F} \end{pmatrix} \boldsymbol{\beta}, \sigma^2 \begin{pmatrix} 1 & \mathbf{r}_0^T \\ \mathbf{r}_0 & \mathbf{R} \end{pmatrix} \right], \mathbf{x}_i \in \mathbb{R}^d, i = 0, 1, \dots, n.$$

where $\mathbf{f}_0 = (f_1(\mathbf{x}_0), \dots, f_p(\mathbf{x}_0))^T$,
 $\mathbf{F} = [\mathbf{f}_j(\mathbf{x}_0)], \quad 1 \le i \le n, 1 \le j \le p,$
 $\boldsymbol{\beta} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_p)^T,$
 $\mathbf{r}_0 = (R(\mathbf{x}_0 - \mathbf{x}_1), \dots, R(\mathbf{x}_0 - \mathbf{x}_n))^T,$
 $\mathbf{R} = [R(\mathbf{x}_i - \mathbf{x}_j)], \quad 1 \le i, j \le n.$

$$\hat{y}(\mathbf{x}_0) = \mathbf{f}_0^T \widehat{eta} + \mathbf{r}_0^T \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{F} \widehat{eta}
ight)$$

where $\widehat{eta} = \left(\mathbf{F}^T \mathbf{R}^{-1} \mathbf{F}
ight)^{-1} \mathbf{F}^T \mathbf{R}^{-1} \mathbf{y}.$

Frequentist Prediction• Consider
$$\begin{pmatrix} y_0 \\ \mathbf{y} \end{pmatrix} \sim \begin{bmatrix} \begin{pmatrix} \mathbf{f}_0^T \\ \mathbf{F} \end{pmatrix} \boldsymbol{\beta}, \sigma^2 \begin{pmatrix} 1 & \mathbf{r}_0^T \\ \mathbf{r}_0 & \mathbf{R} \end{pmatrix} \end{bmatrix}, \mathbf{x}_i \in \mathbb{R}^d, i = 0, 1, \dots, n.$$
where $\mathbf{f}_0 = (f_1(\mathbf{x}_0), \dots, f_p(\mathbf{x}_0))^T$, $\mathbf{F} = [\mathbf{f}_j(\mathbf{x}_0)], \quad 1 \le i \le n, 1 \le j \le p,$ $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^T,$ $\mathbf{r}_0 = (R(\mathbf{x}_0 - \mathbf{x}_1), \dots, R(\mathbf{x}_0 - \mathbf{x}_n))^T,$ $\mathbf{R} = [R(\mathbf{x}_i - \mathbf{x}_j)], \quad 1 \le i, j \le n.$ • The BLUP of $y_0 = \mathbf{y}(\mathbf{x}_0)$ is

$$\hat{y}(\mathbf{x}_0) = \mathbf{f}_0^T \widehat{\boldsymbol{eta}} + \mathbf{r}_0^T \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{F} \widehat{\boldsymbol{eta}} \right)$$

where $\widehat{\boldsymbol{eta}} = \left(\mathbf{F}^T \mathbf{R}^{-1} \mathbf{F} \right)^{-1} \mathbf{F}^T \mathbf{R}^{-1} \mathbf{y}.$

ŷ(**x**₀) is linear in *y_i*, *i* = 1, ..., *n*, so given the weights it is easy to calculate.

- *ŷ*(**x**₀) is linear in *y_i*, *i* = 1, ..., *n*, so given the weights it is easy to calculate.
- MSPE of the BLUP is

$$\sigma^{2} \left(1 - \mathbf{r}_{0}^{T} \mathbf{R}^{-1} \mathbf{r}_{0} + (\mathbf{f}_{0} - \mathbf{F}^{T} \mathbf{R}^{-1} \mathbf{r}_{0})^{T} \mathbf{F}^{T} \mathbf{R}^{-1} \mathbf{F} (\mathbf{f}_{0} - \mathbf{F}^{T} \mathbf{R}^{-1} \mathbf{r}_{0}) \right)$$
$$= \sigma^{2} (1 - \text{variance improvement term}$$
$$+ \text{ penalty since we don't know } \boldsymbol{\beta})$$

• Write $\mathbf{d} = \mathbf{R}^{-1}(\mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}})$, then

$$\hat{y}(\mathbf{x}_0) = \sum_j f_j(\mathbf{x}_0)\hat{\beta}_j + \sum_{i=1}^n d_i R(\mathbf{x}_0 - \mathbf{x}_i).$$

• Write $\mathbf{d} = \mathbf{R}^{-1}(\mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}})$, then

$$\hat{y}(\mathbf{x}_0) = \sum_j f_j(\mathbf{x}_0)\hat{\beta}_j + \sum_{i=1}^n d_i R(\mathbf{x}_0 - \mathbf{x}_i).$$

When x₀ - x_i is large, R(·) is small so less weight is given in forming the prediction

• Write $\mathbf{d} = \mathbf{R}^{-1}(\mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}})$, then

$$\hat{y}(\mathbf{x}_0) = \sum_j f_j(\mathbf{x}_0)\hat{\beta}_j + \sum_{i=1}^n d_i R(\mathbf{x}_0 - \mathbf{x}_i).$$

- When x₀ − x_i is large, R(·) is small so less weight is given in forming the prediction
- When $\mathbf{x}_0 \mathbf{x}_i$ is small, $R(\cdot)$ is large so more weight is given in forming the prediction

• Write $\mathbf{d} = \mathbf{R}^{-1}(\mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}})$, then

$$\hat{y}(\mathbf{x}_0) = \sum_j f_j(\mathbf{x}_0)\hat{\beta}_j + \sum_{i=1}^n d_i R(\mathbf{x}_0 - \mathbf{x}_i).$$

- When x₀ − x_i is large, R(·) is small so less weight is given in forming the prediction
- When $\mathbf{x}_0 \mathbf{x}_i$ is small, $R(\cdot)$ is large so more weight is given in forming the prediction
- If $R(h) = exp(-\theta \sum_{l=1}^{d} h_l^2)$ (isotropic model) then

$$\hat{y}(\mathbf{x}_0) = \sum_j f_j(\mathbf{x}_0)\hat{\beta}_j + \sum_{i=1}^n d_i exp(-\theta \sum_{l=1}^d (x_{0l} - x_{il})^2)$$

is the so-called "Radial Basis Function" model, popular in machine learning and elsewhere for awhile.

• $\hat{y}(\cdot)$ interpolates the observations y_1, \ldots, y_n

- $\hat{y}(\cdot)$ interpolates the observations y_1, \ldots, y_n
- MSPE at the observed data y_1, \ldots, y_n is zero

Empirical BLUP

• The BLUP uses the GLS estimator for β . But in actuality we also have parameters σ^2 and θ (correlation function parameters) that so far have been assumed known.

Empirical BLUP

- The BLUP uses the GLS estimator for β. But in actuality we also have parameters σ² and θ (correlation function parameters) that so far have been assumed known.
- Empirical BLUP (EBLUP): use plug-in estimators for θ and $\sigma^2(\theta)$.

Empirical BLUP

- The BLUP uses the GLS estimator for β. But in actuality we also have parameters σ² and θ (correlation function parameters) that so far have been assumed known.
- Empirical BLUP (EBLUP): use plug-in estimators for θ and $\sigma^2(\theta)$.
- The most common approach uses the MLE.

• For the GP model, the log-likelihood of the data y is

$$l = -\frac{n}{2}log(\sigma^2) - \frac{1}{2}log(|\mathbf{R}|) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{F}\beta)^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{F}\beta).$$

For the GP model, the log-likelihood of the data y is

$$l = -\frac{n}{2}log(\sigma^2) - \frac{1}{2}log(|\mathbf{R}|) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{F}\beta)^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{F}\beta).$$

• Taking $\frac{\partial I}{\partial \beta}$ and setting equal to 0 we get what we had before:

$$\widehat{oldsymbol{eta}}(oldsymbol{ heta}) = \left(\mathbf{F}^{\, au} \mathbf{R}^{-1} \mathbf{F}
ight)^{-1} \mathbf{F}^{\, au} \mathbf{R}^{-1} \mathbf{y}$$

since *R* depends on θ .

•
$$\Rightarrow l(\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \sigma^2, \boldsymbol{\theta}) = -\frac{n}{2}log(\sigma^2) - \frac{1}{2}log(|\mathbf{R}|) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{F}\hat{\boldsymbol{\beta}})^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{F}\hat{\boldsymbol{\beta}}).$$

•
$$\Rightarrow l(\widehat{\beta}(\theta), \sigma^2, \theta) = -\frac{n}{2}log(\sigma^2) - \frac{1}{2}log(|\mathbf{R}|) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{F}\widehat{\beta})^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{F}\widehat{\beta}).$$

- Taking partial wrt σ^2 and setting equal to zero, we get

$$\hat{\sigma}^2(\theta) = \frac{1}{n} (\mathbf{y} - \mathbf{F}\hat{\beta})^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{F}\hat{\beta})$$

since **R** and $\hat{\beta}$ depend on θ .

•
$$\Rightarrow l(\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \hat{\sigma}^2(\boldsymbol{\theta}), \boldsymbol{\theta}) = -\frac{n}{2}log(\hat{\sigma}^2) - \frac{1}{2}log(|\mathbf{R}|) - \frac{n}{2}$$

•
$$\Rightarrow l(\hat{\beta}(\theta), \hat{\sigma}^2(\theta), \theta) = -\frac{n}{2}log(\hat{\sigma}^2) - \frac{1}{2}log(|\mathbf{R}|) - \frac{n}{2}dog(|\mathbf{R}|)$$

- No closed form solution for this, so find $\widehat{\boldsymbol{\theta}}$ by taking the arg max:

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} - \frac{n}{2} log(\widehat{\sigma}^2(\boldsymbol{\theta})) - \frac{1}{2} log(|\mathbf{R}(\boldsymbol{\theta})|)$$

• Say
$$\widehat{\mathbf{R}} = \mathbf{R}(\cdot|\widehat{\theta}), \ \widehat{\mathbf{r}} = \mathbf{r}(\cdot|\widehat{\theta}) \ \text{and} \ \widehat{\beta} = \widehat{\beta}(\widehat{\theta}).$$

• Say
$$\widehat{\mathbf{R}} = \mathbf{R}(\cdot|\widehat{\boldsymbol{ heta}}), \, \widehat{\mathbf{r}} = \mathbf{r}(\cdot|\widehat{\boldsymbol{ heta}}) \, \text{and} \, \widehat{\boldsymbol{eta}} = \widehat{\boldsymbol{eta}}(\widehat{\boldsymbol{ heta}}).$$

Then our EBLUP is

$$\hat{y}(\mathbf{x}_0) = \mathbf{f}_0^T \widehat{\boldsymbol{\beta}} + \widehat{\mathbf{r}}_0^T \widehat{\mathbf{R}}^{-1} (\mathbf{y} - \mathbf{F} \widehat{\boldsymbol{\beta}})$$

and our Empirical MSPE (EMSPE) of the EBLUP is

$$\begin{split} \hat{s}^2(\mathbf{x}_0) &= \hat{\sigma}^2(1-\widehat{\mathbf{r}}_0^T\widehat{\mathbf{R}}^{-1}\widehat{\mathbf{r}}_0 \\ &+ (\mathbf{f}_0 - \mathbf{F}^T\widehat{\mathbf{R}}^{-1}\widehat{\mathbf{r}}_0)^T\mathbf{F}^T\widehat{\mathbf{R}}^{-1}\mathbf{F}(\mathbf{f}_0 - \mathbf{F}^T\widehat{\mathbf{R}}^{-1}\widehat{\mathbf{r}}_0)). \end{split}$$

Still interpolates the data

- Still interpolates the data
- $l(\hat{\beta}(\theta), \hat{\sigma}^2(\theta), \theta)$ can be very challenging to numerically maximize.

- Still interpolates the data
- *l*(β̂(θ), ô²(θ), θ) can be very challenging to numerically maximize.
 - straight Newton-Raphson typically unsuccessful

- Still interpolates the data
- *l*(β̂(θ), ô²(θ), θ) can be very challenging to numerically maximize.
 - straight Newton-Raphson typically unsuccessful
 - A combined strategy such as Nelder-Mead with Newton-Raphson works reasonably well

- Still interpolates the data
- *l*(β̂(θ), ô²(θ), θ) can be very challenging to numerically maximize.
 - straight Newton-Raphson typically unsuccessful
 - A combined strategy such as Nelder-Mead with Newton-Raphson works reasonably well
- Other estimators of $\hat{\sigma}^2$, $\hat{\theta}$ are possible:

- Still interpolates the data
- *l*(β̂(θ), ô²(θ), θ) can be very challenging to numerically maximize.
 - straight Newton-Raphson typically unsuccessful
 - A combined strategy such as Nelder-Mead with Newton-Raphson works reasonably well
- Other estimators of $\hat{\sigma}^2$, $\hat{\theta}$ are possible:
 - REML (Restricted Maximum Likelihood)

- Still interpolates the data
- *l*(β̂(θ), ô²(θ), θ) can be very challenging to numerically maximize.
 - straight Newton-Raphson typically unsuccessful
 - A combined strategy such as Nelder-Mead with Newton-Raphson works reasonably well
- Other estimators of $\hat{\sigma}^2$, $\hat{\theta}$ are possible:
 - REML (Restricted Maximum Likelihood)
 - Penalized MLE[†]

- Still interpolates the data
- *l*(β̂(θ), ô²(θ), θ) can be very challenging to numerically maximize.
 - straight Newton-Raphson typically unsuccessful
 - A combined strategy such as Nelder-Mead with Newton-Raphson works reasonably well
- Other estimators of $\hat{\sigma}^2$, $\hat{\theta}$ are possible:
 - REML (Restricted Maximum Likelihood)
 - Penalized MLE[†]
 - Cross-validation

- Still interpolates the data
- *l*(β̂(θ), ô²(θ), θ) can be very challenging to numerically maximize.
 - straight Newton-Raphson typically unsuccessful
 - A combined strategy such as Nelder-Mead with Newton-Raphson works reasonably well
- Other estimators of $\hat{\sigma}^2$, $\hat{\theta}$ are possible:
 - REML (Restricted Maximum Likelihood)
 - Penalized MLE[†]
 - Cross-validation
- The EMPSE is a point-wise measure of predictive uncertainty, *not* a path-wise measure of uncertainty.

- Still interpolates the data
- *l*(β̂(θ), ô²(θ), θ) can be very challenging to numerically maximize.
 - straight Newton-Raphson typically unsuccessful
 - A combined strategy such as Nelder-Mead with Newton-Raphson works reasonably well
- Other estimators of $\hat{\sigma}^2$, $\hat{\theta}$ are possible:
 - REML (Restricted Maximum Likelihood)
 - Penalized MLE[†]
 - Cross-validation
- The EMPSE is a point-wise measure of predictive uncertainty, *not* a path-wise measure of uncertainty.
- Typically use $\hat{y}(\mathbf{x}_0) \pm 1.96\hat{s}^2(\mathbf{x}_0)$ for a 95% interval.

- Want to produce estimates of σ^2, θ that are less biased than MLE's.

- Want to produce estimates of σ^2, θ that are less biased than MLE's.
- Idea: maximize a REML likelihood

- Want to produce estimates of σ^2, θ that are less biased than MLE's.
- Idea: maximize a REML likelihood
 - simply the likelihood of some transformation of the original data.

- Want to produce estimates of σ^2, θ that are less biased than MLE's.
- Idea: maximize a REML likelihood
 - simply the likelihood of some transformation of the original data.
 - this transformation is usually a linear combination of the data such that these linear combinations of orthogonal to Fβ.

- Want to produce estimates of σ^2, θ that are less biased than MLE's.
- Idea: maximize a REML likelihood
 - simply the likelihood of some transformation of the original data.
 - this transformation is usually a linear combination of the data such that these linear combinations of orthogonal to Fβ.

• Assume **F** is of full rank $(n \times p \text{ for } p \leq n \text{ so rank}(\mathbf{F}) = p.)$

- Want to produce estimates of σ^2, θ that are less biased than MLE's.
- Idea: maximize a REML likelihood
 - simply the likelihood of some transformation of the original data.
 - this transformation is usually a linear combination of the data such that these linear combinations of orthogonal to $F\beta$.
- Assume **F** is of full rank $(n \times p \text{ for } p \leq n \text{ so } rank(\mathbf{F}) = p.)$
- Choose an orthogonal matrix **C** with rank n p s.t. **CF** = **0**.

- Want to produce estimates of σ^2, θ that are less biased than MLE's.
- Idea: maximize a REML likelihood
 - simply the likelihood of some transformation of the original data.
 - this transformation is usually a linear combination of the data such that these linear combinations of orthogonal to $F\beta$.
- Assume **F** is of full rank $(n \times p \text{ for } p \leq n \text{ so } rank(\mathbf{F}) = p.)$
- Choose an orthogonal matrix **C** with rank n p s.t. **CF** = **0**.
- Then, $\widetilde{\mathbf{Y}} = \mathbf{C}\mathbf{Y} \sim N\left(\mathbf{0}, \sigma^2 \mathbf{C}\mathbf{R}\mathbf{C}^\mathsf{T}\right)$

- Want to produce estimates of σ^2, θ that are less biased than MLE's.
- Idea: maximize a REML likelihood
 - simply the likelihood of some transformation of the original data.
 - this transformation is usually a linear combination of the data such that these linear combinations of orthogonal to $F\beta$.
- Assume **F** is of full rank $(n \times p \text{ for } p \leq n \text{ so } rank(\mathbf{F}) = p.)$
- Choose an orthogonal matrix **C** with rank n p s.t. **CF** = **0**.
- Then, $\widetilde{\mathbf{Y}} = \mathbf{C}\mathbf{Y} \sim N\left(\mathbf{0}, \sigma^2 \mathbf{C}\mathbf{R}\mathbf{C}^{\mathsf{T}}\right)$
- And

$$L_{REML}(\sigma^2, \boldsymbol{\theta}) = \frac{1}{(2\pi)^{\frac{n-p}{2}} |\sigma^2 \mathbf{CRC}^\mathsf{T}|^{-\frac{1}{2}}} exp(-\frac{1}{2\sigma^2} \widetilde{\mathbf{Y}}^\mathsf{T} (\mathbf{CRC}^\mathsf{T})^{-1} \widetilde{\mathbf{Y}}).$$

REML: Example

•
$$\mathbf{Y} = (y_1, \dots, y_n)^T \sim N(\mathbf{1}eta_0, \sigma^2 \mathbf{R})$$
 and let

$$\mathbf{C} = \begin{bmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & \dots & 0 \\ \dots & 0 & 0 & -1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \dots & 0 & -1 \end{bmatrix}$$

REML: Example

•
$$\mathbf{Y} = (y_1, \dots, y_n)^T \sim N(\mathbf{1}eta_0, \sigma^2 \mathbf{R})$$
 and let

$$\mathbf{C} = \begin{bmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & \dots & 0 \\ \dots & 0 & 0 & -1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \dots & 0 & -1 \end{bmatrix}$$

• Then
$$\widetilde{\mathbf{Y}} = \begin{pmatrix} y_1 - y_2 \\ y_1 - y_3 \\ \vdots \\ y_1 - y_n \end{pmatrix} \sim N\left(\mathbf{0}, \sigma^2 \mathbf{C} \mathbf{R} \mathbf{C}^T\right)$$

• Given some $\lambda > 0$, this method finds σ^2, θ that maximizes

$$L_{p}(\sigma^{2}, \boldsymbol{\theta} | \mathbf{y}, \lambda) = L(\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \sigma^{2}, \boldsymbol{\theta} | \mathbf{y}) - n \sum_{k=1}^{d} p_{\lambda}(\boldsymbol{\theta}_{k})$$

where $\hat{\beta}(\theta)$ is the usual GLS solution and the penalty $p_{\lambda}(\theta)$ grows as θ grows.

• Given some $\lambda > 0$, this method finds σ^2, θ that maximizes

$$L_{p}(\sigma^{2}, \boldsymbol{\theta} | \mathbf{y}, \lambda) = L(\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \sigma^{2}, \boldsymbol{\theta} | \mathbf{y}) - n \sum_{k=1}^{d} p_{\lambda}(\boldsymbol{\theta}_{k})$$

where $\hat{\beta}(\theta)$ is the usual GLS solution and the penalty $p_{\lambda}(\theta)$ grows as θ grows.

Eg:

• Given some $\lambda > 0$, this method finds σ^2, θ that maximizes

$$L_{p}(\sigma^{2}, \boldsymbol{\theta} | \mathbf{y}, \lambda) = L(\widehat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \sigma^{2}, \boldsymbol{\theta} | \mathbf{y}) - n \sum_{k=1}^{d} p_{\lambda}(\boldsymbol{\theta}_{k})$$

where $\hat{\beta}(\theta)$ is the usual GLS solution and the penalty $p_{\lambda}(\theta)$ grows as θ grows.

Eg:

•
$$p_{\lambda}(heta) = \lambda | heta|$$
 (linear penalty)

• Given some $\lambda > 0$, this method finds σ^2, θ that maximizes

$$L_{\rho}(\sigma^{2}, \boldsymbol{\theta} | \mathbf{y}, \lambda) = L(\widehat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \sigma^{2}, \boldsymbol{\theta} | \mathbf{y}) - n \sum_{k=1}^{d} p_{\lambda}(\boldsymbol{\theta}_{k})$$

where $\hat{\beta}(\theta)$ is the usual GLS solution and the penalty $p_{\lambda}(\theta)$ grows as θ grows.

Eg:

•
$$p_{\lambda}(\theta) = \lambda |\theta|$$
 (linear penalty)

• $p_{\lambda}(\theta) = \lambda \theta^2/2$ (quadratic penalty)

• Given some $\lambda > 0$, this method finds σ^2, θ that maximizes

$$L_{p}(\sigma^{2}, \boldsymbol{\theta} | \mathbf{y}, \lambda) = L(\widehat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \sigma^{2}, \boldsymbol{\theta} | \mathbf{y}) - n \sum_{k=1}^{d} p_{\lambda}(\boldsymbol{\theta}_{k})$$

where $\hat{\beta}(\theta)$ is the usual GLS solution and the penalty $p_{\lambda}(\theta)$ grows as θ grows.

- Eg:
 - $p_{\lambda}(\theta) = \lambda |\theta|$ (linear penalty)
 - $p_{\lambda}(\theta) = \lambda \theta^2/2$ (quadratic penalty)
 - "smooth clipped absolute deviation"†

• Given some $\lambda > 0$, this method finds σ^2, θ that maximizes

$$L_{p}(\sigma^{2}, \boldsymbol{\theta} | \mathbf{y}, \lambda) = L(\widehat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \sigma^{2}, \boldsymbol{\theta} | \mathbf{y}) - n \sum_{k=1}^{d} p_{\lambda}(\boldsymbol{\theta}_{k})$$

where $\hat{\beta}(\theta)$ is the usual GLS solution and the penalty $p_{\lambda}(\theta)$ grows as θ grows.

- Eg:
 - $p_{\lambda}(\theta) = \lambda |\theta|$ (linear penalty)
 - $p_{\lambda}(\theta) = \lambda \theta^2/2$ (quadratic penalty)
 - "smooth clipped absolute deviation"†
- Choose λ by cross-validation

Cross-Validation Fitting

 Given θ and ŷ_{-i}(θ) := BLUP of y(x_i) with correlation θ based on the data {x_j, y(x_j)}_{j≠i},

$$\hat{y}_{-i}(\theta) = \mathbf{f}^{\mathsf{T}}(\mathbf{x}_i)\widehat{\boldsymbol{\beta}}(\theta) + \mathbf{r}_0^{\mathsf{T}}(\mathbf{x}_i)\mathbf{R}^{-1}(\mathbf{y}_{-i} - \mathbf{F}\widehat{\boldsymbol{\beta}})$$

Cross-Validation Fitting

 Given θ and ŷ_{-i}(θ) := BLUP of y(x_i) with correlation θ based on the data {x_j, y(x_j)}_{j≠i},

$$\hat{y}_{-i}(\theta) = \mathbf{f}^{\mathsf{T}}(\mathbf{x}_i)\widehat{\beta}(\theta) + \mathbf{r}_0^{\mathsf{T}}(\mathbf{x}_i)\mathbf{R}^{-1}(\mathbf{y}_{-i} - \mathbf{F}\widehat{\beta})$$

• Choose $\hat{\theta}$ as

$$\widehat{oldsymbol{ heta}}_{CV} = rg\min_{oldsymbol{ heta}} \sum_{i=1}^n \left(y(\mathbf{x}_i) - \hat{y}_{-i}(\mathbf{x}_i,oldsymbol{ heta})
ight)^2$$

$$\widehat{\sigma}_{cv}^{2} = \frac{1}{n} \left(\mathbf{y}_{n} - \mathbf{F} \widehat{\boldsymbol{\beta}}_{CV} \right)^{T} \widehat{\mathbf{R}}^{-1} (\widehat{\boldsymbol{\theta}}_{CV}) \left(\mathbf{y}_{n} - \mathbf{F} \widehat{\boldsymbol{\beta}}_{CV} \right)$$

where $\widehat{\boldsymbol{\beta}}_{CV} = \widehat{\boldsymbol{\beta}}(\widehat{\boldsymbol{\theta}}_{CV}).$