
Gaussian Process Regression and Emulation
STAT8810, Fall 2017

M.T. Pratola

September 4, 2017

Today

Further thoughts on (frequentist) model fitting;
Compact Support Covariances

Previously: Fitting the GP to data

• Maximum Likelihood approach:

• arg max◊ ¸(‚—(◊), ‡̂2(◊), ◊) where
¸(‚—(◊), ‡̂2(◊), ◊) = ≠ n

2 log(‡̂2) ≠ 1
2 log(|R|) ≠ n

2 .

• and ‚—(◊), ‡̂2(◊) were the usual suspects

• Restricted/Residual Maximum Likelihood (REML), Penalized
MLE.

• Newton-Raphson, Conjugate Gradient, Nelder-Mead, . . .

Previously: Fitting the GP to data

• Maximum Likelihood approach:
• arg max◊ ¸(‚—(◊), ‡̂2(◊), ◊) where

¸(‚—(◊), ‡̂2(◊), ◊) = ≠ n
2 log(‡̂2) ≠ 1

2 log(|R|) ≠ n
2 .

• and ‚—(◊), ‡̂2(◊) were the usual suspects

• Restricted/Residual Maximum Likelihood (REML), Penalized
MLE.

• Newton-Raphson, Conjugate Gradient, Nelder-Mead, . . .

Previously: Fitting the GP to data

• Maximum Likelihood approach:
• arg max◊ ¸(‚—(◊), ‡̂2(◊), ◊) where

¸(‚—(◊), ‡̂2(◊), ◊) = ≠ n
2 log(‡̂2) ≠ 1

2 log(|R|) ≠ n
2 .

• and ‚—(◊), ‡̂2(◊) were the usual suspects

• Restricted/Residual Maximum Likelihood (REML), Penalized
MLE.

• Newton-Raphson, Conjugate Gradient, Nelder-Mead, . . .

Previously: Fitting the GP to data

• Maximum Likelihood approach:
• arg max◊ ¸(‚—(◊), ‡̂2(◊), ◊) where

¸(‚—(◊), ‡̂2(◊), ◊) = ≠ n
2 log(‡̂2) ≠ 1

2 log(|R|) ≠ n
2 .

• and ‚—(◊), ‡̂2(◊) were the usual suspects

• Restricted/Residual Maximum Likelihood (REML), Penalized
MLE.

• Newton-Raphson, Conjugate Gradient, Nelder-Mead, . . .

Previously: Fitting the GP to data

• Maximum Likelihood approach:
• arg max◊ ¸(‚—(◊), ‡̂2(◊), ◊) where

¸(‚—(◊), ‡̂2(◊), ◊) = ≠ n
2 log(‡̂2) ≠ 1

2 log(|R|) ≠ n
2 .

• and ‚—(◊), ‡̂2(◊) were the usual suspects

• Restricted/Residual Maximum Likelihood (REML), Penalized
MLE.

• Newton-Raphson, Conjugate Gradient, Nelder-Mead, . . .

Maximizing the log-Likelihood

• We have 2 basic problems

1. The likelihood function is often not well behaved. As
motivated last class, this can be the result of identifiability
problems when estimating parameters from e�ectively a single
realization of our process.

• even when the infill asymptotics say the parameters should be
identifiable, in practice we have a finite (discretized) sample
from our unknown function

Maximizing the log-Likelihood

• We have 2 basic problems

1. The likelihood function is often not well behaved. As
motivated last class, this can be the result of identifiability
problems when estimating parameters from e�ectively a single
realization of our process.

• even when the infill asymptotics say the parameters should be
identifiable, in practice we have a finite (discretized) sample
from our unknown function

Maximizing the log-Likelihood

• We have 2 basic problems

1. The likelihood function is often not well behaved. As
motivated last class, this can be the result of identifiability
problems when estimating parameters from e�ectively a single
realization of our process.

• even when the infill asymptotics say the parameters should be
identifiable, in practice we have a finite (discretized) sample
from our unknown function

Example in 2D with Gaussian Correlation

source("dace.sim.r")

logl<-function(rho,y,design.distmat,alpha=2,conditioning=0)

{

n=length(y)

R=rhogeodacecormat(design.distmat,rho,alpha)$R

cR=chol(R+diag(n)*conditioning)

Rinv=chol2inv(cR)

s2.hat=(1/n)*t(y)%*%Rinv%*%y

logdetR.div2=sum(log(diag(cR)))

l=-n/2*log(s2.hat)-logdetR.div2-n/2

return(l)

}

Example in 2D with Gaussian Correlation
library(rgl); rgl.clear()

set.seed(66)

n=25

x1=runif(n)

x2=runif(n)

X=as.matrix(cbind(x1,x2))

l1=list(m1=abs(outer(X[,1],X[,1],"-")))

l2=list(m2=abs(outer(X[,2],X[,2],"-")))

l.dez=list(l1=l1,l2=l2)

rho=c(0.9,0.1)

R=rhogeodacecormat(l.dez,rho)$R

L=t(chol(R+diag(n)*.Machine$double.eps*100))

Z=rnorm(n)

Y=L%*%Z

Example in 2D with Gaussian Correlation

rho1=seq(.001,1,length=20)

rho2=seq(.001,1,length=20)

rho.grid=as.matrix(expand.grid(rho1,rho2))

l.vals=rep(0,nrow(rho.grid))

for(i in 1:nrow(rho.grid))

l.vals[i]=logl(rho.grid[i,],Y,l.dez,

conditioning=.Machine$double.eps*1000)

persp3d(matrix(l.vals,20,20),col="grey",xlab="rho1",

ylab="rho2",zlab="logl",xlim=range(rho1),

ylim=range(rho2))

Example in 2D with Gaussian Correlation

Figure 1: log-likelihood function

Example in 2D with Gaussian Correlation
set.seed(66)

n=15

x1=runif(n)

x2=runif(n)

X=as.matrix(cbind(x1,x2))

l1=list(m1=abs(outer(X[,1],X[,1],"-")))

l2=list(m2=abs(outer(X[,2],X[,2],"-")))

l.dez=list(l1=l1,l2=l2)

rho=c(0.9,0.1)

R=rhogeodacecormat(l.dez,rho)$R

L=t(chol(R+diag(n)*.Machine$double.eps*100))

Z=rnorm(n)

Y=L%*%Z

Example in 2D with Gaussian Correlation

Figure 2: log-likelihood function

Example in 2D with Gaussian Correlation
set.seed(66)

n=8

x1=runif(n)

x2=runif(n)

X=as.matrix(cbind(x1,x2))

l1=list(m1=abs(outer(X[,1],X[,1],"-")))

l2=list(m2=abs(outer(X[,2],X[,2],"-")))

l.dez=list(l1=l1,l2=l2)

rho=c(0.9,0.1)

R=rhogeodacecormat(l.dez,rho)$R

L=t(chol(R+diag(n)*.Machine$double.eps*100))

Z=rnorm(n)

Y=L%*%Z

Example in 2D with Gaussian Correlation

Figure 3: log-likelihood function

Same example with penalized likelihood

• Recall we can take a penalized likelihood of the form

¸(◊) ≠ n

dÿ

k=1
p⁄(flk)

• Say we use p⁄(flk) = ≠fl2
k(1 ≠ flk)2, then this prefer some

moderate degree of smoothness.

l.vals=rep(0,nrow(rho.grid))

lambda=0.1

for(i in 1:nrow(rho.grid))

l.vals[i]=logl(rho.grid[i,],Y,l.dez,conditioning=.Machine$double.eps*1000)+n*lambda*(rho.grid[i,1]^2*(1-rho.grid[i,1])^2+rho.grid[i,2]^2*(1-rho.grid[i,2])^2)

Same example with penalized likelihood

• Recall we can take a penalized likelihood of the form

¸(◊) ≠ n

dÿ

k=1
p⁄(flk)

• Say we use p⁄(flk) = ≠fl2
k(1 ≠ flk)2, then this prefer some

moderate degree of smoothness.

l.vals=rep(0,nrow(rho.grid))

lambda=0.1

for(i in 1:nrow(rho.grid))

l.vals[i]=logl(rho.grid[i,],Y,l.dez,conditioning=.Machine$double.eps*1000)+n*lambda*(rho.grid[i,1]^2*(1-rho.grid[i,1])^2+rho.grid[i,2]^2*(1-rho.grid[i,2])^2)

d

Same example with penalized likelihood

Figure 4: Penalized with lambda=0.1

Same example with penalized likelihood

Figure 5: Penalized with lambda=5

Same example with penalized likelihood

Figure 6: Penalized with lambda=10

Maximizing the log-Likelihood

• We have 2 basic problems

2. Computational constraints. If our discretized sample of our
function contains n datapoints, we need to compute the inverse
of an n ◊ n correlation matrix, an O(n3) operation - i.e. very
slow.

• besides the computational constraints, the memory constraints
also can become problematic quickly as they grow like O(n2).

Maximizing the log-Likelihood

• We have 2 basic problems

2. Computational constraints. If our discretized sample of our
function contains n datapoints, we need to compute the inverse
of an n ◊ n correlation matrix, an O(n3) operation - i.e. very
slow.

• besides the computational constraints, the memory constraints
also can become problematic quickly as they grow like O(n2).

Maximizing the log-Likelihood

• We have 2 basic problems

2. Computational constraints. If our discretized sample of our
function contains n datapoints, we need to compute the inverse
of an n ◊ n correlation matrix, an O(n3) operation - i.e. very
slow.

• besides the computational constraints, the memory constraints
also can become problematic quickly as they grow like O(n2).

Old-school Optimization

• Suppose we want to maximize a non-linear function of a single
variable, ¸(◊), or of many variables, ¸(◊).

• Equivalent to finding ¸Õ(◊) = 0 and second derivative test.
• Most or all of the usual approaches I am going to mention are

things you already know. My goal is not to explain them in
overt detail (although I do provide references). My purpose for
mentioning these will become clearer later on. . .

Old-school Optimization

• Suppose we want to maximize a non-linear function of a single
variable, ¸(◊), or of many variables, ¸(◊).

• Equivalent to finding ¸Õ(◊) = 0 and second derivative test.

• Most or all of the usual approaches I am going to mention are
things you already know. My goal is not to explain them in
overt detail (although I do provide references). My purpose for
mentioning these will become clearer later on. . .

Old-school Optimization

• Suppose we want to maximize a non-linear function of a single
variable, ¸(◊), or of many variables, ¸(◊).

• Equivalent to finding ¸Õ(◊) = 0 and second derivative test.
• Most or all of the usual approaches I am going to mention are

things you already know. My goal is not to explain them in
overt detail (although I do provide references). My purpose for
mentioning these will become clearer later on. . .

Newton-Raphson Method

• In this approach our function is the score function S(◊) and we
want S(◊) = 0 where the score is the gradient of the
log-likelihood wrt ◊, S(◊) = ˆ¸(◊)

◊ .

• Approximate the score by a linear Taylor series expansion about
a particular ◊(k) :

S(◊) ¥ S(◊(k)) ≠ H(◊(k))(◊ ≠ ◊(k))

where H(·) is the Hessian matrix,

[H(◊)]ij = ˆ2¸

ˆ◊iˆ◊j
.

d

Newton-Raphson Method

• In this approach our function is the score function S(◊) and we
want S(◊) = 0 where the score is the gradient of the
log-likelihood wrt ◊, S(◊) = ˆ¸(◊)

◊ .

• Approximate the score by a linear Taylor series expansion about
a particular ◊(k) :

S(◊) ¥ S(◊(k)) ≠ H(◊(k))(◊ ≠ ◊(k))

where H(·) is the Hessian matrix,

[H(◊)]ij = ˆ2¸

ˆ◊iˆ◊j
.

Newton-Raphson Method

• Setting equal to zero and rearranging,

◊(k+1) = ◊(k) ≠ H≠1(◊(k))S(◊(k))

• This motivates the NR iterations k = 1, 2, . . .

• If ¸ is concave and unimodal, ◊(k), k = 1, 2, . . . converges to
the MLE.

• When not concave NR is not guaranteed to converge from an
arbitrary starting value.

• Expensive when lots of parameters because of H≠1.
Computation of H≠1 also expensive in GP models because of
R≠1.

Newton-Raphson Method

• Setting equal to zero and rearranging,

◊(k+1) = ◊(k) ≠ H≠1(◊(k))S(◊(k))

• This motivates the NR iterations k = 1, 2, . . .

• If ¸ is concave and unimodal, ◊(k), k = 1, 2, . . . converges to
the MLE.

• When not concave NR is not guaranteed to converge from an
arbitrary starting value.

• Expensive when lots of parameters because of H≠1.
Computation of H≠1 also expensive in GP models because of
R≠1.

Newton-Raphson Method

• Setting equal to zero and rearranging,

◊(k+1) = ◊(k) ≠ H≠1(◊(k))S(◊(k))

• This motivates the NR iterations k = 1, 2, . . .

• If ¸ is concave and unimodal, ◊(k), k = 1, 2, . . . converges to
the MLE.

• When not concave NR is not guaranteed to converge from an
arbitrary starting value.

• Expensive when lots of parameters because of H≠1.
Computation of H≠1 also expensive in GP models because of
R≠1.

Newton-Raphson Method

• Setting equal to zero and rearranging,

◊(k+1) = ◊(k) ≠ H≠1(◊(k))S(◊(k))

• This motivates the NR iterations k = 1, 2, . . .

• If ¸ is concave and unimodal, ◊(k), k = 1, 2, . . . converges to
the MLE.

• When not concave NR is not guaranteed to converge from an
arbitrary starting value.

• Expensive when lots of parameters because of H≠1.
Computation of H≠1 also expensive in GP models because of
R≠1.

Newton-Raphson Method

• Setting equal to zero and rearranging,

◊(k+1) = ◊(k) ≠ H≠1(◊(k))S(◊(k))

• This motivates the NR iterations k = 1, 2, . . .

• If ¸ is concave and unimodal, ◊(k), k = 1, 2, . . . converges to
the MLE.

• When not concave NR is not guaranteed to converge from an
arbitrary starting value.

• Expensive when lots of parameters because of H≠1.
Computation of H≠1 also expensive in GP models because of
R≠1.

Newton-Raphson Method

• Modified NR: replace H(·) by it’s expected value, the Fisher
Information matrix evaluated at ◊(k):

[I(◊)]ij = ≠E

C3
ˆ¸(◊)

◊i

4 A
ˆ¸(◊)

◊j

B-----◊

D

.

giving
◊(k+1) = ◊(k) + I≠1(◊(k))S(◊(k))

• For i.i.d. data, replace I(·) with the empirical information
matrix,

I(◊(k)) = 1
n

nÿ

i=1
S

1
yi

---◊(k)
2

S

1
yi

---◊(k)
2T

• But we don’t have i.i.d. data. . .

Newton-Raphson Method

• Modified NR: replace H(·) by it’s expected value, the Fisher
Information matrix evaluated at ◊(k):

[I(◊)]ij = ≠E

C3
ˆ¸(◊)

◊i

4 A
ˆ¸(◊)

◊j

B-----◊

D

.

giving
◊(k+1) = ◊(k) + I≠1(◊(k))S(◊(k))

• For i.i.d. data, replace I(·) with the empirical information
matrix,

I(◊(k)) = 1
n

nÿ

i=1
S

1
yi

---◊(k)
2

S

1
yi

---◊(k)
2T

• But we don’t have i.i.d. data. . .

Newton-Raphson Method

• Modified NR: replace H(·) by it’s expected value, the Fisher
Information matrix evaluated at ◊(k):

[I(◊)]ij = ≠E

C3
ˆ¸(◊)

◊i

4 A
ˆ¸(◊)

◊j

B-----◊

D

.

giving
◊(k+1) = ◊(k) + I≠1(◊(k))S(◊(k))

• For i.i.d. data, replace I(·) with the empirical information
matrix,

I(◊(k)) = 1
n

nÿ

i=1
S

1
yi

---◊(k)
2

S

1
yi

---◊(k)
2T

• But we don’t have i.i.d. data. . .

Nelder-Mead†

• Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

• Derivative-free method (good) but cannot directly handle
constraints (less good).

• For a function of d variables, define the current simplex in
d-dimensional space by the d + 1 points ◊0, . . . , ◊d .

• Write ¸i = ¸(◊i) and ¸h = maxi ¸i and ¸l = mini ¸i .

• Define the centroid of the points with i ”= l as ◊̄ and at each
stage replace ◊l by a new point via three operations: reflection,
contraction and expansion.

† Nelder and Mead: A Simplex Method for Function Minimization, The

Computer Journal, vol. 7, pp.308–313 (1965). Citation count is 25604 as of

September 2017(!)

Nelder-Mead†

• Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

• Derivative-free method (good) but cannot directly handle
constraints (less good).

• For a function of d variables, define the current simplex in
d-dimensional space by the d + 1 points ◊0, . . . , ◊d .

• Write ¸i = ¸(◊i) and ¸h = maxi ¸i and ¸l = mini ¸i .

• Define the centroid of the points with i ”= l as ◊̄ and at each
stage replace ◊l by a new point via three operations: reflection,
contraction and expansion.

† Nelder and Mead: A Simplex Method for Function Minimization, The

Computer Journal, vol. 7, pp.308–313 (1965). Citation count is 25604 as of

September 2017(!)

Nelder-Mead†

• Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

• Derivative-free method (good) but cannot directly handle
constraints (less good).

• For a function of d variables, define the current simplex in
d-dimensional space by the d + 1 points ◊0, . . . , ◊d .

• Write ¸i = ¸(◊i) and ¸h = maxi ¸i and ¸l = mini ¸i .

• Define the centroid of the points with i ”= l as ◊̄ and at each
stage replace ◊l by a new point via three operations: reflection,
contraction and expansion.

† Nelder and Mead: A Simplex Method for Function Minimization, The

Computer Journal, vol. 7, pp.308–313 (1965). Citation count is 25604 as of

September 2017(!)

Nelder-Mead†

• Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

• Derivative-free method (good) but cannot directly handle
constraints (less good).

• For a function of d variables, define the current simplex in
d-dimensional space by the d + 1 points ◊0, . . . , ◊d .

• Write ¸i = ¸(◊i) and ¸h = maxi ¸i and ¸l = mini ¸i .

• Define the centroid of the points with i ”= l as ◊̄ and at each
stage replace ◊l by a new point via three operations: reflection,
contraction and expansion.

† Nelder and Mead: A Simplex Method for Function Minimization, The

Computer Journal, vol. 7, pp.308–313 (1965). Citation count is 25604 as of

September 2017(!)

Nelder-Mead†

• Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

• Derivative-free method (good) but cannot directly handle
constraints (less good).

• For a function of d variables, define the current simplex in
d-dimensional space by the d + 1 points ◊0, . . . , ◊d .

• Write ¸i = ¸(◊i) and ¸h = maxi ¸i and ¸l = mini ¸i .

• Define the centroid of the points with i ”= l as ◊̄ and at each
stage replace ◊l by a new point via three operations: reflection,
contraction and expansion.

† Nelder and Mead: A Simplex Method for Function Minimization, The

Computer Journal, vol. 7, pp.308–313 (1965). Citation count is 25604 as of

September 2017(!)

Nelder-Mead

Reflection, contraction and expansion:

E.
Eisley

q¥pansm |y
lmtmutbn

'

Eye
.

÷÷e:

Nelder-Mead

• Idea: keep ¸max within the simplex and keep trying to collapse
the simplex on this point.

• cool animation

Nelder-Mead

• Idea: keep ¸max within the simplex and keep trying to collapse
the simplex on this point.

• cool animation

Some Additional References

Nash and Varadhan: Unifying Optimization Algorithms to Aid Software System
Users: optimx for R, Journal of Statistical Software, vol. 43, pp. 1–14 (2011)

- a wrapper library for general minimization of non-linear smooth
functions of n parameters possibly with box constraints

• similar syntax to R’s built-in optim() function.

• allows running many optimization algorithms in one call and
provides a comparative summary of the methods results.

• can also set it up to apply methods sequentially using
follow.on=TRUE. E.g. start with Nelder-Mead and follow-up
with a gradient-based method to refine estimate.

Some Additional References

Nash and Varadhan: Unifying Optimization Algorithms to Aid Software System
Users: optimx for R, Journal of Statistical Software, vol. 43, pp. 1–14 (2011)

- a wrapper library for general minimization of non-linear smooth
functions of n parameters possibly with box constraints

• similar syntax to R’s built-in optim() function.
• allows running many optimization algorithms in one call and

provides a comparative summary of the methods results.

• can also set it up to apply methods sequentially using
follow.on=TRUE. E.g. start with Nelder-Mead and follow-up
with a gradient-based method to refine estimate.

Some Additional References

Nash and Varadhan: Unifying Optimization Algorithms to Aid Software System
Users: optimx for R, Journal of Statistical Software, vol. 43, pp. 1–14 (2011)

- a wrapper library for general minimization of non-linear smooth
functions of n parameters possibly with box constraints

• similar syntax to R’s built-in optim() function.
• allows running many optimization algorithms in one call and

provides a comparative summary of the methods results.
• can also set it up to apply methods sequentially using

follow.on=TRUE. E.g. start with Nelder-Mead and follow-up
with a gradient-based method to refine estimate.

Prediction and Uncertainty Quantification

• Once we have our fitted model we can:

• construct our prediction/emulation of our function;
• quantify the uncertainties in our prediction/emulation;
• do other things, such as sensitivity analysis (more on this later).

Prediction and Uncertainty Quantification

• Once we have our fitted model we can:
• construct our prediction/emulation of our function;

• quantify the uncertainties in our prediction/emulation;
• do other things, such as sensitivity analysis (more on this later).

Prediction and Uncertainty Quantification

• Once we have our fitted model we can:
• construct our prediction/emulation of our function;
• quantify the uncertainties in our prediction/emulation;

• do other things, such as sensitivity analysis (more on this later).

Prediction and Uncertainty Quantification

• Once we have our fitted model we can:
• construct our prediction/emulation of our function;
• quantify the uncertainties in our prediction/emulation;
• do other things, such as sensitivity analysis (more on this later).

1D Example - generate our data

set.seed(77)

n=4

x1=seq(0.1,0.9,length=n)+runif(n,-.05,.05)

l1=list(m1=abs(outer(x1,x1,"-")))

l.dez=list(l1=l1)

rho=c(0.001)

R=rhogeodacecormat(l.dez,rho)$R

L=t(chol(R+diag(n)*.Machine$double.eps*100))

Z=rnorm(n)

Y=L%*%Z

1D Example - estimate via MLE
rho.hat=optimize(logl,interval=c(0,1),Y,l.dez,lower=0,

upper=0.9,maximum=TRUE)$maximum

rho.hat

[1] 0.003514553

R=rhogeodacecormat(l.dez,rho.hat,2)$R

cR=chol(R+diag(n)*.Machine$double.eps*0)

Rinv=chol2inv(cR)

s2.hat=(1/n)*t(Y)%*%Rinv%*%Y

s2.hat

[,1]

[1,] 0.7797767

1D Example - predict and pointwise uncertainty
intervals

ngrid=100

pred.grid=seq(0,1,length=100)

X=c(pred.grid,x1)

l1=list(m1=abs(outer(X,X,"-")))

l.dez=list(l1=l1)

Rall=rhogeodacecormat(l.dez,rho.hat)$R

R0=Rall[1:ngrid,(ngrid+1):(ngrid+n)]

rm(Rall)

yhat=R0%*%Rinv%*%Y

s2hat=s2.hat*diag(1-R0%*%Rinv%*%t(R0))

1D Example - plot

plot(x1,Y,pch=20,cex=2,xlim=c(0,1),ylim=c(-2,2),

xlab="x",ylab="y(x)")

lines(pred.grid,yhat,lwd=2,col="black")

lines(pred.grid,yhat-1.96*sqrt(s2hat),col="grey")

lines(pred.grid,yhat+1.96*sqrt(s2hat),col="grey")

1D Example - plot

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

x

y(
x)

84+1=8 Hitter + (f- FTRTRVFTR
'

P A - FR
'

r)) when no
:

E4tgR:

"
1) = ftp + rttt

'

ly - Ff) when no : JLH - rt Rty •

2D Example - generate our data
set.seed(99)

n=10

x1=runif(n)

x2=runif(n)

X=cbind(x1,x2)

l1=list(m1=abs(outer(X[,1],X[,1],"-")))

l2=list(m2=abs(outer(X[,2],X[,2],"-")))

l.dez=list(l1=l1,l2=l2)

rho=c(0.001,0.5)

R=rhogeodacecormat(l.dez,rho)$R

L=t(chol(R+diag(n)*.Machine$double.eps*100))

Z=rnorm(n)

Y=L%*%Z

2D Example - estimate via MLE
rho.hat=optim(c(0.5,0.5),logl,gr=NULL,lower=0,

upper=0.9,method="L-BFGS-B",

control=list(fnscale=-1),Y,l.dez)$par

rho.hat

[1] 0.3434825 0.0526240

R=rhogeodacecormat(l.dez,rho.hat,2)$R

cR=chol(R+diag(n)*.Machine$double.eps*0)

Rinv=chol2inv(cR)

s2.hat=(1/n)*t(Y)%*%Rinv%*%Y

s2.hat

[,1]

[1,] 4.150426

2D Example - predict and pointwise uncertainty
intervals

ngrid=10

pred.grid=as.matrix(expand.grid(seq(0,1,length=ngrid),

seq(0,1,length=ngrid)))

Xall=rbind(pred.grid,X)

l1=list(m1=abs(outer(Xall[,1],Xall[,1],"-")))

l2=list(m2=abs(outer(Xall[,2],Xall[,2],"-")))

l.dez=list(l1=l1,l2=l2)

Rall=rhogeodacecormat(l.dez,rho.hat)$R

R0=Rall[1:(ngrid^2),(ngrid^2+1):(ngrid^2+n)]

rm(Rall)

yhat=R0%*%Rinv%*%Y

se.pred=sqrt(s2.hat*diag(1-R0%*%Rinv%*%t(R0)))

2D Example - plot

rgl.clear()

plot3d(X[,1],X[,2],Y,type=�s�,radius=0.075,col="red",

xlim=c(0,1),ylim=c(0,1),zlim=c(-3,3))

persp3d(seq(0,1,length=ngrid),seq(0,1,length=ngrid),

yhat,col="blue",add=TRUE)

persp3d(seq(0,1,length=ngrid),seq(0,1,length=ngrid),

yhat-1.96*se.pred,col="grey",add=TRUE)

persp3d(seq(0,1,length=ngrid),seq(0,1,length=ngrid),

yhat+1.96*se.pred,col="grey",add=TRUE)

rgl.snapshot("2dexample.png")

2D Example - plot

Figure 7: Fitted Response and 95% uncertainty interval

Dealing with Computational Limitations
N=seq(10,1010,by=50)

times=rep(0,length(N))

for(i in 1:length(N))

{

n=N[i]; x1=runif(n); x2=runif(n); X=cbind(x1,x2)

l1=list(m1=abs(outer(X[,1],X[,1],"-")))

l2=list(m2=abs(outer(X[,2],X[,2],"-")))

l.dez=list(l1=l1,l2=l2)

rho=c(0.01,0.01)

elapt=system.time({

R=rhogeodacecormat(l.dez,rho)$R;

Ri=chol2inv(chol(R+diag(n)*.Machine$double.eps*100));

rm(R); rm(Ri)

})

times[i]=elapt[[1]]

}

Dealing with Computational Limitations

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

sample size

tim
e

(s
)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

sample size

tim
e^

(1
/3

)

Dealing with Computational Limitations

• The computation problem has motivated the direction for
much research in this area

• well, we still want good predictive performance and uncertainty
quantification – otherwise, what is the point?

• however, the stationarity assumption of the GP model is overly
burdensome in many practical contexts, so perhaps one can
hope to allevaite two issues at once.

• A popular approach has been to sparsify (introduce 0’s into)
the correlation matrix R. This can lead to significant
computational reductions by using so-called sparse matrix
algebra packages.

• What we need are correlation functions that decayed to 0
exactly at a finite range from the origin, like the cubic
correlation function. The are called compact correlation

functions.

Dealing with Computational Limitations

• The computation problem has motivated the direction for
much research in this area

• well, we still want good predictive performance and uncertainty
quantification – otherwise, what is the point?

• however, the stationarity assumption of the GP model is overly
burdensome in many practical contexts, so perhaps one can
hope to allevaite two issues at once.

• A popular approach has been to sparsify (introduce 0’s into)
the correlation matrix R. This can lead to significant
computational reductions by using so-called sparse matrix
algebra packages.

• What we need are correlation functions that decayed to 0
exactly at a finite range from the origin, like the cubic
correlation function. The are called compact correlation

functions.

Dealing with Computational Limitations

• The computation problem has motivated the direction for
much research in this area

• well, we still want good predictive performance and uncertainty
quantification – otherwise, what is the point?

• however, the stationarity assumption of the GP model is overly
burdensome in many practical contexts, so perhaps one can
hope to allevaite two issues at once.

• A popular approach has been to sparsify (introduce 0’s into)
the correlation matrix R. This can lead to significant
computational reductions by using so-called sparse matrix
algebra packages.

• What we need are correlation functions that decayed to 0
exactly at a finite range from the origin, like the cubic
correlation function. The are called compact correlation

functions.

Dealing with Computational Limitations

• The computation problem has motivated the direction for
much research in this area

• well, we still want good predictive performance and uncertainty
quantification – otherwise, what is the point?

• however, the stationarity assumption of the GP model is overly
burdensome in many practical contexts, so perhaps one can
hope to allevaite two issues at once.

• A popular approach has been to sparsify (introduce 0’s into)
the correlation matrix R. This can lead to significant
computational reductions by using so-called sparse matrix
algebra packages.

• What we need are correlation functions that decayed to 0
exactly at a finite range from the origin, like the cubic
correlation function. The are called compact correlation

functions.

Dealing with Computational Limitations

• The computation problem has motivated the direction for
much research in this area

• well, we still want good predictive performance and uncertainty
quantification – otherwise, what is the point?

• however, the stationarity assumption of the GP model is overly
burdensome in many practical contexts, so perhaps one can
hope to allevaite two issues at once.

• A popular approach has been to sparsify (introduce 0’s into)
the correlation matrix R. This can lead to significant
computational reductions by using so-called sparse matrix
algebra packages.

• What we need are correlation functions that decayed to 0
exactly at a finite range from the origin, like the cubic
correlation function. The are called compact correlation

functions.

Compact Correlation Functions

• Applications of compact covariances to statisitcal uncertainty
quantification trace back to Furrer et al. and Kaufman et al. †.

• A key contribution from this string of research has been the R

package fields by Furrer et al.

• this package combines compact covariance capabilities with
e�cient sparse matrix algebra.

• however, it’s focus is on 2D and 3D problems.

Kaufman, Bingham, Habib, Heitmann and Frieman: E�cient Emulators of Computer
Experiments Using Compactly Supported Correlation Functions, with an Application
to Cosmology, The Annals of Applied Statistics, vol. 5, pp. 2470–2492 (2011).

Furrer, Genton and Nychka: Covariance tapering for interpolation of large spatial
datasets, Journal of Computational and Graphical Statistics, vol. 15, pp. 502–523
(2006).

Compact Correlation Functions

• Applications of compact covariances to statisitcal uncertainty
quantification trace back to Furrer et al. and Kaufman et al. †.

• A key contribution from this string of research has been the R

package fields by Furrer et al.

• this package combines compact covariance capabilities with
e�cient sparse matrix algebra.

• however, it’s focus is on 2D and 3D problems.

Kaufman, Bingham, Habib, Heitmann and Frieman: E�cient Emulators of Computer
Experiments Using Compactly Supported Correlation Functions, with an Application
to Cosmology, The Annals of Applied Statistics, vol. 5, pp. 2470–2492 (2011).

Furrer, Genton and Nychka: Covariance tapering for interpolation of large spatial
datasets, Journal of Computational and Graphical Statistics, vol. 15, pp. 502–523
(2006).

Compact Correlation Functions

• Applications of compact covariances to statisitcal uncertainty
quantification trace back to Furrer et al. and Kaufman et al. †.

• A key contribution from this string of research has been the R

package fields by Furrer et al.
• this package combines compact covariance capabilities with

e�cient sparse matrix algebra.

• however, it’s focus is on 2D and 3D problems.

Kaufman, Bingham, Habib, Heitmann and Frieman: E�cient Emulators of Computer
Experiments Using Compactly Supported Correlation Functions, with an Application
to Cosmology, The Annals of Applied Statistics, vol. 5, pp. 2470–2492 (2011).

Furrer, Genton and Nychka: Covariance tapering for interpolation of large spatial
datasets, Journal of Computational and Graphical Statistics, vol. 15, pp. 502–523
(2006).

Compact Correlation Functions

• Applications of compact covariances to statisitcal uncertainty
quantification trace back to Furrer et al. and Kaufman et al. †.

• A key contribution from this string of research has been the R

package fields by Furrer et al.
• this package combines compact covariance capabilities with

e�cient sparse matrix algebra.
• however, it’s focus is on 2D and 3D problems.

Kaufman, Bingham, Habib, Heitmann and Frieman: E�cient Emulators of Computer
Experiments Using Compactly Supported Correlation Functions, with an Application
to Cosmology, The Annals of Applied Statistics, vol. 5, pp. 2470–2492 (2011).

Furrer, Genton and Nychka: Covariance tapering for interpolation of large spatial
datasets, Journal of Computational and Graphical Statistics, vol. 15, pp. 502–523
(2006).

Compact Correlation Functions
• In reality, these statistical results are built on key contributions

from mathematics in the study of positive semi-definite
functions with compact support.

• Early contributions were the Askey class of functions which
later developed into the Wendland functions that are positive
semi-definite in 2D and 3D.

• Finally this culminated in the generalized Wendland functions,
which support arbitrary finite dimensions and allow one to
parameterize the degree of di�erentiability much like the
Matern.

Gneiting: Radial Positive Definite Functions Generated by Euclid’s Hat, Journal of
Multivariate Analysis, vol. 69, pp. 88–119 (1999).

Gneiting: Strictly and non-strictly positive definite functions on spheres_, Bernoulli,
vol. 19, pp. 1327—1349 (2013).

Bevilacqua, Faouzi, Furrer and Porcu: Estimation and Prediction using generalized
Wendland Covariance Functions under fixed domain asymptotics, arXiv preprint
arXiv:1607.06921 (2017).

Compact Correlation Functions
• In reality, these statistical results are built on key contributions

from mathematics in the study of positive semi-definite
functions with compact support.

• Early contributions were the Askey class of functions which
later developed into the Wendland functions that are positive
semi-definite in 2D and 3D.

• Finally this culminated in the generalized Wendland functions,
which support arbitrary finite dimensions and allow one to
parameterize the degree of di�erentiability much like the
Matern.

Gneiting: Radial Positive Definite Functions Generated by Euclid’s Hat, Journal of
Multivariate Analysis, vol. 69, pp. 88–119 (1999).

Gneiting: Strictly and non-strictly positive definite functions on spheres_, Bernoulli,
vol. 19, pp. 1327—1349 (2013).

Bevilacqua, Faouzi, Furrer and Porcu: Estimation and Prediction using generalized
Wendland Covariance Functions under fixed domain asymptotics, arXiv preprint
arXiv:1607.06921 (2017).

Compact Correlation Functions
• In reality, these statistical results are built on key contributions

from mathematics in the study of positive semi-definite
functions with compact support.

• Early contributions were the Askey class of functions which
later developed into the Wendland functions that are positive
semi-definite in 2D and 3D.

• Finally this culminated in the generalized Wendland functions,
which support arbitrary finite dimensions and allow one to
parameterize the degree of di�erentiability much like the
Matern.

Gneiting: Radial Positive Definite Functions Generated by Euclid’s Hat, Journal of
Multivariate Analysis, vol. 69, pp. 88–119 (1999).

Gneiting: Strictly and non-strictly positive definite functions on spheres_, Bernoulli,
vol. 19, pp. 1327—1349 (2013).

Bevilacqua, Faouzi, Furrer and Porcu: Estimation and Prediction using generalized
Wendland Covariance Functions under fixed domain asymptotics, arXiv preprint
arXiv:1607.06921 (2017).

The Askey Function

• The Askey function is said to belong to the class of positive
semi-definite functions (a continuous mapping from Rd æ R)
with compact support on ◊,

A(h) =
3

1 ≠ h

◊

4µ

+
=

Y
]

[

1
1 ≠ h

◊

2µ
, 0 Æ h < ◊

0, h Ø ◊
,

if and only if µ Ø (d + 1)/2 and where h is the usual Euclidean
norm.

The Wendland Function

• Furrer et al. introduce the Wendland1 and Wendland2
functions which give valid covariances in 3D with di�erent
degrees of di�erentiability:

Wendland1:
1
1 ≠ h

◊

24

+

1
1 + 4h

◊

2

Wendland2:
1
1 ≠ h

◊

26

+

1
1 + 6h

◊ + 35h2

3◊2

2

• Their approach was to pair these with the Matern to form a
“tapered” covariance, defined as the product:

Rtap(h) = RMatern(h)RWendland(h)

The Wendland Function

• Furrer et al. introduce the Wendland1 and Wendland2
functions which give valid covariances in 3D with di�erent
degrees of di�erentiability:

Wendland1:
1
1 ≠ h

◊

24

+

1
1 + 4h

◊

2

Wendland2:
1
1 ≠ h

◊

26

+

1
1 + 6h

◊ + 35h2

3◊2

2

• Their approach was to pair these with the Matern to form a
“tapered” covariance, defined as the product:

Rtap(h) = RMatern(h)RWendland(h)

The Wendland Function

• Furrer et al. were able to show that in some important ways†
the tapered correlation function gave behaviour that was
largely indistinguishable from just using the Matern itself.

• in particular, they recommend pairing Wendland1 with the
Matern with ‹ Æ 1.5 and Wendland2 with Matern with ‹ Æ 2.5.

• The idea was to, in some sense, borrow properties of both the
Matern and the compactness of the Wendland in forming the
tapered correlation function.

† Asymptotically equivalent MSPE (in the in-fill sense). See Stein: Interpolation of
Spatial Data: Some Theory for Kriging (1999) for further details.

The Wendland Function

• Furrer et al. were able to show that in some important ways†
the tapered correlation function gave behaviour that was
largely indistinguishable from just using the Matern itself.

• in particular, they recommend pairing Wendland1 with the
Matern with ‹ Æ 1.5 and Wendland2 with Matern with ‹ Æ 2.5.

• The idea was to, in some sense, borrow properties of both the
Matern and the compactness of the Wendland in forming the
tapered correlation function.

† Asymptotically equivalent MSPE (in the in-fill sense). See Stein: Interpolation of
Spatial Data: Some Theory for Kriging (1999) for further details.

The Wendland Function

• Furrer et al. were able to show that in some important ways†
the tapered correlation function gave behaviour that was
largely indistinguishable from just using the Matern itself.

• in particular, they recommend pairing Wendland1 with the
Matern with ‹ Æ 1.5 and Wendland2 with Matern with ‹ Æ 2.5.

• The idea was to, in some sense, borrow properties of both the
Matern and the compactness of the Wendland in forming the
tapered correlation function.

† Asymptotically equivalent MSPE (in the in-fill sense). See Stein: Interpolation of
Spatial Data: Some Theory for Kriging (1999) for further details.

The Generalized Wendland Function

• Takes as parameters the input dimension and the the degree of
di�erentiability desired.

• Has been shown to be of the form A(h)Pk(h) where A(h) is
the Askey function and Pk(h) is a polynomial of order k in h.

• The general form when k is not a positive integer is written in
terms of an integral (Bevilacqua et al.):

R(h) =

Y
]

[

1
B(2k,µ+1)

s 1
h u(u2 ≠ h

2)k≠1(1 ≠ u)µ
du, 0 Æ h < 1

0, h Ø 1

where B(·) is the Beta function.
• Instead of tapering, we might view this as a more direct way of

specifying the compactness and di�erentiability properties one
seeks.

The Generalized Wendland Function

• Takes as parameters the input dimension and the the degree of
di�erentiability desired.

• Has been shown to be of the form A(h)Pk(h) where A(h) is
the Askey function and Pk(h) is a polynomial of order k in h.

• The general form when k is not a positive integer is written in
terms of an integral (Bevilacqua et al.):

R(h) =

Y
]

[

1
B(2k,µ+1)

s 1
h u(u2 ≠ h

2)k≠1(1 ≠ u)µ
du, 0 Æ h < 1

0, h Ø 1

where B(·) is the Beta function.
• Instead of tapering, we might view this as a more direct way of

specifying the compactness and di�erentiability properties one
seeks.

The Generalized Wendland Function

• Takes as parameters the input dimension and the the degree of
di�erentiability desired.

• Has been shown to be of the form A(h)Pk(h) where A(h) is
the Askey function and Pk(h) is a polynomial of order k in h.

• The general form when k is not a positive integer is written in
terms of an integral (Bevilacqua et al.):

R(h) =

Y
]

[

1
B(2k,µ+1)

s 1
h u(u2 ≠ h

2)k≠1(1 ≠ u)µ
du, 0 Æ h < 1

0, h Ø 1

where B(·) is the Beta function.

• Instead of tapering, we might view this as a more direct way of
specifying the compactness and di�erentiability properties one
seeks.

The Generalized Wendland Function

• Takes as parameters the input dimension and the the degree of
di�erentiability desired.

• Has been shown to be of the form A(h)Pk(h) where A(h) is
the Askey function and Pk(h) is a polynomial of order k in h.

• The general form when k is not a positive integer is written in
terms of an integral (Bevilacqua et al.):

R(h) =

Y
]

[

1
B(2k,µ+1)

s 1
h u(u2 ≠ h

2)k≠1(1 ≠ u)µ
du, 0 Æ h < 1

0, h Ø 1

where B(·) is the Beta function.
• Instead of tapering, we might view this as a more direct way of

specifying the compactness and di�erentiability properties one
seeks.

Wendland and friends

x=seq(0,1,length=100)

l1=list(m1=abs(outer(x,x,"-")))

l.dez=list(l1=l1)

h=sqrt((0-x)^2)

R.gauss=rhogeodacecormat(l.dez,rho=0.001,alpha=2)$R

R.exp=rhogeodacecormat(l.dez,rho=0.001,alpha=1)$R

R.wend1=wendland1(l.dez,0.5)$R

R.wend2=wendland2(l.dez,0.5)$R

R.gw1=generalized.wendland(l.dez,0.5,1)$R

R.gw2=generalized.wendland(l.dez,0.5,2)$R

R.gw3=generalized.wendland(l.dez,0.5,3)$R

R.gw4=generalized.wendland(l.dez,0.5,4)$R

Wendland and friends

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

R
(h
)

Grey=Gaussian and Exponential; Dashed=Wendland 1,2;
Dotted=Generalized Wendland with k=1,2,3,4

