Gaussian Process Regression and Emulation

STAT8810, Fall 2017

M.T. Pratola

September 4, 2017

Today

Further thoughts on (frequentist) model fitting;
Compact Support Covariances

Previously: Fitting the GP to data

= Maximum Likelihood approach:

Previously: Fitting the GP to data

= Maximum Likelihood approach:
« argmaxg {(B(0), 6%(6),) where
((B(6),62(6),0) = —3log(6?) — 3l0g(IR|) — 5.

Previously: Fitting the GP to data

= Maximum Likelihood approach:
« argmaxg {(B(0), 6%(6),) where
((B(0),5%(0),0) = —3log(6”) — 3log(IR]) — 5.
= and 3(0),5%(0) were the usual suspects

Previously: Fitting the GP to data

= Maximum Likelihood approach:
. argmaxel(ﬂ(),54(0), 0) where
U(B(0),5%(0),0) = —5log(6°) — 3log(IR|) - 3.

= and B(8),62(6) were the usual suspects

= Restricted/Residual Maximum Likelihood (REML), Penalized
MLE.

Previously: Fitting the GP to data

= Maximum Likelihood approach:
« argmaxg {(B(0), 6%(6),) where
((B(6),5%(0),0) = —3log(6?) — Slog(|IR|) — 5.
= and B(8),62(6) were the usual suspects
= Restricted/Residual Maximum Likelihood (REML), Penalized
MLE.

= Newton-Raphson, Conjugate Gradient, Nelder-Mead, ...

Maximizing the log-Likelihood

= We have 2 basic problems

Maximizing the log-Likelihood

= We have 2 basic problems

1. The likelihood function is often not well behaved. As
motivated last class, this can be the result of identifiability

problems when estimating parameters from effectively a single
realization of our process.

Maximizing the log-Likelihood

= We have 2 basic problems

1. The likelihood function is often not well behaved. As
motivated last class, this can be the result of identifiability

problems when estimating parameters from effectively a single
realization of our process.

= even when the infill asymptotics say the parameters should be
identifiable, in practice we have a finite (discretized) sample
from our unknown function

Example in 2D with Gaussian Correlation

source("dace.sim.r")

logl<-function(rho,y,design.distmat,alpha=2,conditioni
{
n=length(y)
R=rhogeodacecormat (design.distmat,rho,alpha)$R
cR=chol (R+diag(n)*conditioning)
Rinv=chol2inv(cR)

s2.hat=(1/n) *t (y) %*%Rinv)*%y
logdetR.div2=sum(log(diag(cR)))
1=-n/2*log(s2.hat)-logdetR.div2-n/2

return(l)

Example in 2D with Gaussian Correlation

library(rgl); rgl.clear()
set.seed(66)

n=25

x1=runif (n)

x2=runif (n)

X=as.matrix(cbind(x1,x2))
1l1=1ist(ml=abs(outer (X[,1],X[,1]1,"-")))
12=1ist (m2=abs (outer (X[,2]1,X[,2],"-")))
1.dez=1ist(11=11,12=12)

rho=c(0.9,0.1)
R=rhogeodacecormat(1l.dez,rho)$R

L=t (chol (R+diag(n)*.Machine$double.eps*100))
Z=rnorm(n)
Y=L%*%hZ

Example in 2D with Gaussian Correlation

rhol=seq(.001,1,length=20)
rho2=seq(.001,1,length=20)
rho.grid=as.matrix(expand.grid(rhol,rho2))
1.vals=rep(0,nrow(rho.grid))

for(i in 1:nrow(rho.grid))
1l.vals[i]=logl(rho.grid[i,],Y,1.dez,
conditioning=.Machine$double.eps*10

persp3d(matrix(l.vals,20,20),col="grey",xlab="rhol",
ylab="rho2",zlab="logl",xlim=range (rhol),
ylim=range (rho2))

Example in 2D with Gaussian Correlation

logl

Figure 1: log-likelihood function

Example in 2D with Gaussian Correlation

set.seed(66)

n=15

x1l=runif (n)

x2=runif (n)

X=as.matrix(cbind(x1,x2))

11=list (mi=abs(outer (X[,1],X[,11,"-")))
12=1ist (m2=abs (outer (X[,2],X[,2],"-")))
1.dez=1ist(11=11,12=12)

rho=c(0.9,0.1)
R=rhogeodacecormat (1l.dez,rho)$R

L=t (chol (R+diag(n)*.Machine$double.eps*100))
Z=rnorm(n)
Y=L%*%Z

Example in 2D with Gaussian Correlation

0
0‘%'40-60.8 1

logl

Figure 2: log-likelihood function

Example in 2D with Gaussian Correlation

set.seed(66)

n=8

x1l=runif (n)

x2=runif (n)

X=as.matrix(cbind(x1,x2))

11=list (mi=abs(outer (X[,1],X[,11,"-")))
12=1ist (m2=abs (outer (X[,2],X[,2],"-")))
1.dez=1ist(11=11,12=12)

rho=c(0.9,0.1)
R=rhogeodacecormat (1l.dez,rho)$R

L=t (chol (R+diag(n)*.Machine$double.eps*100))
Z=rnorm(n)
Y=L%*%Z

Example in 2D with Gaussian Correlation

00.2.496

0.8

logl

Figure 3: log-likelihood function

Same example with penalized likelihood

= Recall we can take a penalized likelihood of the form

d
(8) = n>_ px(px)
k=1

1.vals=rep(0,nrow(rho.grid))
lambda=0.1

for(i in 1:nrow(rho.grid))

1.vals[i]=logl(rho.grid[i,],Y,1.dez,conditioning=.

Same example with penalized likelihood

= Recall we can take a penalized likelihood of the form

d
06) k> palon)
k=1

= Say we use px(pk) = —p2(1 — pk)?, then this prefer some
moderate degree of smoothness.

1.vals=rep(0,nrow(rho.grid))
lambda=0.1

for(i in 1:nrow(rho.grid))

1.vals[i]=logl(rho.grid[i,],Y,1.dez,conditioning=.

Same example with penalized likelihood

00.2.496

0.8

logl

Figure 4: Penalized with lambda=0.1

Same example with penalized likelihood

0
0‘%'40-60.8 1

logl

Figure 5: Penalized with lambda=5

Same example with penalized likelihood

0
o'%-40.60'8 1

logl

Figure 6: Penalized with lambda=10

Maximizing the log-Likelihood

= We have 2 basic problems

Maximizing the log-Likelihood

= We have 2 basic problems

2. Computational constraints. If our discretized sample of our
function contains n datapoints, we need to compute the inverse
of an n x n correlation matrix, an O(n%) operation - i.e. very
slow.

Maximizing the log-Likelihood

= We have 2 basic problems

2. Computational constraints. If our discretized sample of our
function contains n datapoints, we need to compute the inverse
of an n x n correlation matrix, an O(n%) operation - i.e. very
slow.

= besides the computational constraints, the memory constraints
also can become problematic quickly as they grow like O(n?).

Old-school Optimization

= Suppose we want to maximize a non-linear function of a single
variable, £(6), or of many variables, ¢(6).

Old-school Optimization

= Suppose we want to maximize a non-linear function of a single
variable, £(6), or of many variables, ¢(6).

= Equivalent to finding ¢/() = 0 and second derivative test.

Old-school Optimization

= Suppose we want to maximize a non-linear function of a single
variable, £(6), or of many variables, ¢(6).

= Equivalent to finding ¢/() = 0 and second derivative test.

= Most or all of the usual approaches | am going to mention are
things you already know. My goal is not to explain them in
overt detail (although | do provide references). My purpose for
mentioning these will become clearer later on. ..

Newton-Raphson Method

= In this approach our function is the score function S(@) and we
want S(6) = 0 where the score is the gradient of the
log-likelihood wrt 6,5(0) = %géi).

Newton-Raphson Method

= In this approach our function is the score function S(@) and we
want S(6) = 0 where the score is the gradient of the

log-likelihood wrt 6, 5(0) = %.
= Approximate the score by a linear Taylor series expansion about
a particular 0k

5(8) ~ S(0%)) — H(™¥)) (6 — 8X)
where H(-) is the Hessian matrix,

0%¢

Newton-Raphson Method

= Setting equal to zero and rearranging,

o(k+1) — g(k) _ 1(9(k) (g(k))

Newton-Raphson Method

= Setting equal to zero and rearranging,
o(k+1) — g(k) _ 1(9(k)S (g(k))

= This motivates the NR iterations k =1,2,...

Newton-Raphson Method

= Setting equal to zero and rearranging,
o(k+1) — g(k) _ 1(9(k)S (g(k))

= This motivates the NR iterations k =1,2,...

= |f £ is concave and unimodal, 0("), k=1,2,... converges to
the MLE.

Newton-Raphson Method

Setting equal to zero and rearranging,

o(k+1) — g(k) _ 1(9(k)S (g(k))
This motivates the NR iterations k =1,2,...
If ¢ is concave and unimodal, 0("), k=1,2,... converges to
the MLE.

When not concave NR is not guaranteed to converge from an
arbitrary starting value.

Newton-Raphson Method

Setting equal to zero and rearranging,
o(k+1) — g(k) _ H—l(g(k))g(g(k))

This motivates the NR iterations k =1,2,...
If ¢ is concave and unimodal, 0("), k=1,2,... converges to
the MLE.

When not concave NR is not guaranteed to converge from an
arbitrary starting value.

Expensive when lots of parameters because of H!.

Computation of H™! also expensive in GP models because of
R

Newton-Raphson Method

= Modified NR: replace H(:) by it's expected value, the Fisher
Information matrix evaluated at 8():

6N — £ [(8@(,_9)) (a@(f’)) M -

U+ = gk 171 (p(k)) 5(9(K)

giving

Newton-Raphson Method

= Modified NR: replace H(:) by it's expected value, the Fisher
Information matrix evaluated at 8():

16)) = —E Kaza(ia)> (aﬁe(ﬁ)> M _

U+ = gk 171 (p(k)) 5(9(K)

= Fori.i.d. data, replace I(-) with the empirical information
matrix,

giving

09) =35 (1fo) 5 (vfo)

Newton-Raphson Method

= Modified NR: replace H(:) by it's expected value, the Fisher
Information matrix evaluated at 8():

16)) = —E Kaea(ie)> (aﬁe(ﬁ)> M _

U+ = gk 171 (p(k)) 5(9(K)

giving

= Fori.i.d. data, replace I(-) with the empirical information
matrix,

Z(6™)) Z S ()0t

= But we don't have i.i.d. data. ..

7)s (v

g(k)>

Nelder-Mead

= Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

t Nelder and Mead: A Simplex Method for Function Minimization, The
Computer Journal, vol. 7, pp.308-313 (1965). Citation count is 25604 as of
September 2017(!)

Nelder-Mead

= Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

= Derivative-free method (good) but cannot directly handle
constraints (less good).

t Nelder and Mead: A Simplex Method for Function Minimization, The
Computer Journal, vol. 7, pp.308-313 (1965). Citation count is 25604 as of
September 2017(!)

Nelder-Mead

= Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

= Derivative-free method (good) but cannot directly handle
constraints (less good).

= For a function of d variables, define the current simplex in
d-dimensional space by the d + 1 points 6, ..., 0.

t Nelder and Mead: A Simplex Method for Function Minimization, The
Computer Journal, vol. 7, pp.308-313 (1965). Citation count is 25604 as of
September 2017(!)

Nelder-Mead

= Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

= Derivative-free method (good) but cannot directly handle
constraints (less good).

= For a function of d variables, define the current simplex in
d-dimensional space by the d + 1 points 6, ..., 0.

= Write ¢; = £(0;) and ¢, = max; ¢; and ¢; = min; ;.

t Nelder and Mead: A Simplex Method for Function Minimization, The
Computer Journal, vol. 7, pp.308-313 (1965). Citation count is 25604 as of
September 2017(!)

Nelder-Mead

= Uses squishy-stretchy triangles (2D) or simplex (higher-D) to
traverse the maximization surface.

= Derivative-free method (good) but cannot directly handle
constraints (less good).

= For a function of d variables, define the current simplex in
d-dimensional space by the d + 1 points 6, ..., 0.

= Write ¢; = £(0;) and ¢, = max; ¢; and ¢; = min; ;.

= Define the centroid of the points with i # / as 6 and at each
stage replace 0, by a new point via three operations: reflection,
contraction and expansion.

t Nelder and Mead: A Simplex Method for Function Minimization, The
Computer Journal, vol. 7, pp.308-313 (1965). Citation count is 25604 as of
September 2017(!)

Nelder-Mead

Reflection, contraction and expansion:

Nelder-Mead

« Idea: keep {nax within the simplex and keep trying to collapse
the simplex on this point.

Nelder-Mead

« Idea: keep {nax within the simplex and keep trying to collapse
the simplex on this point.

= cool animation

Some Additional References

Nash and Varadhan: Unifying Optimization Algorithms to Aid Software System
Users: optimz for R, Journal of Statistical Software, vol. 43, pp. 1-14 (2011)

- a wrapper library for general minimization of non-linear smooth
functions of n parameters possibly with box constraints

= similar syntax to R's built-in optim() function.

Some Additional References

Nash and Varadhan: Unifying Optimization Algorithms to Aid Software System
Users: optimz for R, Journal of Statistical Software, vol. 43, pp. 1-14 (2011)

- a wrapper library for general minimization of non-linear smooth
functions of n parameters possibly with box constraints

= similar syntax to R's built-in optim() function.

= allows running many optimization algorithms in one call and
provides a comparative summary of the methods results.

Some Additional References

Nash and Varadhan: Unifying Optimization Algorithms to Aid Software System
Users: optimz for R, Journal of Statistical Software, vol. 43, pp. 1-14 (2011)

- a wrapper library for general minimization of non-linear smooth
functions of n parameters possibly with box constraints

= similar syntax to R's built-in optim() function.
= allows running many optimization algorithms in one call and
provides a comparative summary of the methods results.

= can also set it up to apply methods sequentially using
follow.on=TRUE. E.g. start with Nelder-Mead and follow-up
with a gradient-based method to refine estimate.

Prediction and Uncertainty Quantification

= Once we have our fitted model we can:

Prediction and Uncertainty Quantification

= Once we have our fitted model we can:

= construct our prediction/emulation of our function;

Prediction and Uncertainty Quantification

= Once we have our fitted model we can:

= construct our prediction/emulation of our function;
= quantify the uncertainties in our prediction/emulation;

Prediction and Uncertainty Quantification

= Once we have our fitted model we can:

= construct our prediction/emulation of our function;
= quantify the uncertainties in our prediction/emulation;
= do other things, such as sensitivity analysis (more on this later).

1D Example - generate our data

set.seed(77)

n=4
x1=seq(0.1,0.9,length=n)+runif (n,-.05, .05)
11=1list(ml=abs(outer(x1,x1,"-")))
1.dez=list(11=11)

rho=c(0.001)
R=rhogeodacecormat (1.dez,rho)$R

L=t (chol (R+diag(n)*.Machine$double.eps*100))
Z=rnorm(n)
Y=L%*%hZ

1D Example - estimate via MLE

rho.hat=optimize(logl,interval=c(0,1),Y,1.dez,lower=0,

upper=0.9,maximum=TRUE) $maximum
rho.hat

[1] 0.003514553

R=rhogeodacecormat(l.dez,rho.hat,2)$R
cR=chol (R+diag(n) *.Machine$double.eps*0)

Rinv=chol2inv (cR)
s2.hat=(1/n) *t (Y) %*%Rinv¥*%Y
s2.hat

[,1]
[1,] 0.7797767

1D Example - predict and pointwise uncertainty
intervals

ngrid=100
pred.grid=seq(0,1,length=100)
X=c(pred.grid,x1)
l1=list(ml=abs(outer(X,X,"-")))
1l.dez=1list(11=11)

Rall=rhogeodacecormat(l.dez,rho.hat)$R
RO=Rall[1:ngrid, (ngrid+1) : (ngrid+n)]
rm(Rall)

yhat=R0%*%Rinv’*%Y
s2hat=s2.hat*diag(1-R0%*%Rinv/*%t (RO))

1D Example - plot

plot(xl,Y,pch=20,cex=2,x1lim=c(0,1) ,ylim=c(-2,2),
xlab="x",ylab="y(x)")
lines(pred.grid,yhat,lwd=2,col="black")

lines(pred.grid,yhat-1.96*sqrt (s2hat),col="grey")
lines(pred.grid,yhat+1.96*sqrt(s2hat),col="grey")

8= 5+ (- R+ (B FRAY PR (8-) bhon szor F(-eKr)
1D Example - plot /

) |

T T T T T
0.0 0.2 0.4 / 0.6 0.8

[glﬁ = .(»\f‘f; P Qyﬂ% whon p=0 ’SM“-XPT @"3

2D Example - generate our data

set.seed(99)

n=10

x1l=runif (n)

x2=runif (n)

X=cbind (x1,x2)

11=list (mi=abs(outer (X[,1],X[,11,"-")))
12=1ist (m2=abs (outer (X[,2],X[,2],"-")))
1.dez=1ist(11=11,12=12)

rho=c(0.001,0.5)
R=rhogeodacecormat (1l.dez,rho)$R

L=t (chol (R+diag(n)*.Machine$double.eps*100))
Z=rnorm(n)
Y=L%*%Z

2D Example - estimate via MLE

rho.hat=optim(c(0.5,0.5),logl,gr=NULL,lower=0,
upper=0.9,method="L-BFGS-B",

control=list(fnscale=-1),Y,1.dez)$par
rho.hat

[1] 0.3434825 0.0526240

R=rhogeodacecormat (l.dez,rho.hat,2)$R
cR=chol (R+diag(n) * .Machine$double.eps*0)

Rinv=chol2inv(cR)
s2.hat=(1/n) *t (Y) %*%Rinv%*%Y
s2.hat

#it [,1]
[1,] 4.150426

2D Example - predict and pointwise uncertainty
intervals

ngrid=10

pred.grid=as.matrix(expand.grid(seq(0,1,length=ngrid),
seq(0,1,length=ngrid)))

Xall=rbind(pred.grid,X)

11=1ist (ml=abs(outer(Xall[,1],Xall[,1],"-")))

12=1ist (m2=abs (outer(Xall[,2],Xalll[,2],"-")))

1.dez=1list(11=11,12=12)

Rall=rhogeodacecormat(1l.dez,rho.hat)$R
RO=Rall[1:(ngrid~2), (ngrid~2+1): (ngrid~2+n)]
rm(Rall)

yhat=RO%*%Rinv’*%Y
se.pred=sqrt (s2.hat*diag(1-RO%*%RinvY*%t (R0O)))

2D Example - plot

rgl.clear()

plot3d(X[,1],X[,2],Y,type="'s"',radius=0.075,col="red",
x1lim=c(0,1) ,ylim=c(0,1),zlim=c(-3,3))

persp3d(seq(0,1,length=ngrid) ,seq(0,1,length=ngrid),
yhat,col="blue",add=TRUE)

persp3d(seq(0,1,length=ngrid) ,seq(0,1,length=ngrid),
yhat-1.96%se.pred,col="grey",add=TRUE)
persp3d(seq(0,1,length=ngrid),seq(0,1,length=ngrid),
yhat+1.96%se.pred,col="grey",add=TRUE)
rgl.snapshot ("2dexample.png")

2D Example - plot

00'%'%-60.8 1

Figure 7: Fitted Response and 95% uncertainty interval

Dealing with Computational Limitations

N=seq(10,1010,by=50)

times=rep(0,length(N))

for(i in 1:length(N))

{
n=N[i]; x1=runif(n); x2=runif(n); X=cbind(x1l,x2)
11=1ist (ml=abs(outer (X[,1],X[,11,"-")))
12=1ist (m2=abs(outer (X[,2],X[,2]1,"-")))

1l.dez=1list(11=11,12=12)

rho=c(0.01,0.01)

elapt=system.time ({

R=rhogeodacecormat (1l.dez,rho)$R;

Ri=chol2inv(chol (R+diag(n)*.Machine$double.eps*100
rm(R); rm(Ri)

b

times[i]=elapt[[1]]

time (s)

0.4

0.3

0.2

0.1

0.0

Dealing with Computational Limitations

sample size

800

T
1000

time~(1/3)

@
S}

0.6

0.4

0.2

0.0

sample size

T
800

T
1000

Dealing with Computational Limitations

= The computation problem has motivated the direction for
much research in this area

Dealing with Computational Limitations

= The computation problem has motivated the direction for
much research in this area

= well, we still want good predictive performance and uncertainty
quantification — otherwise, what is the point?

Dealing with Computational Limitations

= The computation problem has motivated the direction for
much research in this area

= well, we still want good predictive performance and uncertainty
quantification — otherwise, what is the point?

= however, the stationarity assumption of the GP model is overly
burdensome in many practical contexts, so perhaps one can
hope to allevaite two issues at once.

Dealing with Computational Limitations

The computation problem has motivated the direction for
much research in this area

= well, we still want good predictive performance and uncertainty
quantification — otherwise, what is the point?

= however, the stationarity assumption of the GP model is overly
burdensome in many practical contexts, so perhaps one can
hope to allevaite two issues at once.

A popular approach has been to sparsify (introduce 0's into)
the correlation matrix R. This can lead to significant
computational reductions by using so-called sparse matrix
algebra packages.

Dealing with Computational Limitations

The computation problem has motivated the direction for
much research in this area

= well, we still want good predictive performance and uncertainty
quantification — otherwise, what is the point?

= however, the stationarity assumption of the GP model is overly
burdensome in many practical contexts, so perhaps one can
hope to allevaite two issues at once.

A popular approach has been to sparsify (introduce 0's into)
the correlation matrix R. This can lead to significant
computational reductions by using so-called sparse matrix
algebra packages.

What we need are correlation functions that decayed to 0
exactly at a finite range from the origin, like the cubic
correlation function. The are called compact correlation
functions.

Compact Correlation Functions

= Applications of compact covariances to statisitcal uncertainty
quantification trace back to Furrer et al. and Kaufman et al. .

Kaufman, Bingham, Habib, Heitmann and Frieman: Efficient Emulators of Computer
Experiments Using Compactly Supported Correlation Functions, with an Application
to Cosmology, The Annals of Applied Statistics, vol. 5, pp. 2470-2492 (2011).

Furrer, Genton and Nychka: Covariance tapering for interpolation of large spatial
datasets, Journal of Computational and Graphical Statistics, vol. 15, pp. 502-523
(2006).

Compact Correlation Functions

= Applications of compact covariances to statisitcal uncertainty
quantification trace back to Furrer et al. and Kaufman et al. .

= A key contribution from this string of research has been the R
package fields by Furrer et al.

Kaufman, Bingham, Habib, Heitmann and Frieman: Efficient Emulators of Computer
Experiments Using Compactly Supported Correlation Functions, with an Application
to Cosmology, The Annals of Applied Statistics, vol. 5, pp. 2470-2492 (2011).

Furrer, Genton and Nychka: Covariance tapering for interpolation of large spatial
datasets, Journal of Computational and Graphical Statistics, vol. 15, pp. 502-523
(2006).

Compact Correlation Functions

= Applications of compact covariances to statisitcal uncertainty
quantification trace back to Furrer et al. and Kaufman et al. .

= A key contribution from this string of research has been the R
package fields by Furrer et al.

= this package combines compact covariance capabilities with
efficient sparse matrix algebra.

Kaufman, Bingham, Habib, Heitmann and Frieman: Efficient Emulators of Computer
Experiments Using Compactly Supported Correlation Functions, with an Application
to Cosmology, The Annals of Applied Statistics, vol. 5, pp. 2470-2492 (2011).

Furrer, Genton and Nychka: Covariance tapering for interpolation of large spatial
datasets, Journal of Computational and Graphical Statistics, vol. 15, pp. 502-523
(2006).

Compact Correlation Functions

= Applications of compact covariances to statisitcal uncertainty
quantification trace back to Furrer et al. and Kaufman et al. .

= A key contribution from this string of research has been the R
package fields by Furrer et al.

= this package combines compact covariance capabilities with
efficient sparse matrix algebra.
= however, it's focus is on 2D and 3D problems.

Kaufman, Bingham, Habib, Heitmann and Frieman: Efficient Emulators of Computer
Experiments Using Compactly Supported Correlation Functions, with an Application
to Cosmology, The Annals of Applied Statistics, vol. 5, pp. 2470-2492 (2011).

Furrer, Genton and Nychka: Covariance tapering for interpolation of large spatial
datasets, Journal of Computational and Graphical Statistics, vol. 15, pp. 502-523
(2006).

Compact Correlation Functions

= In reality, these statistical results are built on key contributions
from mathematics in the study of positive semi-definite
functions with compact support.

Gneiting: Radial Positive Definite Functions Generated by Euclid’s Hat, Journal of
Multivariate Analysis, vol. 69, pp. 88-119 (1999).

Gneiting: Strictly and non-strictly positive definite functions on spheres_, Bernoulli,
vol. 19, pp. 1327—1349 (2013).

Bevilacqua, Faouzi, Furrer and Porcu: Estimation and Prediction using generalized
Wendland Covariance Functions under fixed domain asymptotics, arXiv preprint
arXiv:1607.06921 (2017).

Compact Correlation Functions

= In reality, these statistical results are built on key contributions
from mathematics in the study of positive semi-definite
functions with compact support.

= Early contributions were the Askey class of functions which
later developed into the Wendland functions that are positive
semi-definite in 2D and 3D.

Gneiting: Radial Positive Definite Functions Generated by Euclid’s Hat, Journal of
Multivariate Analysis, vol. 69, pp. 88-119 (1999).

Gneiting: Strictly and non-strictly positive definite functions on spheres_, Bernoulli,
vol. 19, pp. 1327—1349 (2013).

Bevilacqua, Faouzi, Furrer and Porcu: Estimation and Prediction using generalized
Wendland Covariance Functions under fixed domain asymptotics, arXiv preprint
arXiv:1607.06921 (2017).

Compact Correlation Functions

= In reality, these statistical results are built on key contributions
from mathematics in the study of positive semi-definite
functions with compact support.

= Early contributions were the Askey class of functions which
later developed into the Wendland functions that are positive
semi-definite in 2D and 3D.

= Finally this culminated in the generalized Wendland functions,
which support arbitrary finite dimensions and allow one to
parameterize the degree of differentiability much like the
Matern.

Gneiting: Radial Positive Definite Functions Generated by Euclid’s Hat, Journal of
Multivariate Analysis, vol. 69, pp. 88-119 (1999).

Gneiting: Strictly and non-strictly positive definite functions on spheres_, Bernoulli,
vol. 19, pp. 1327—1349 (2013).

Bevilacqua, Faouzi, Furrer and Porcu: Estimation and Prediction using generalized
Wendland Covariance Functions under fixed domain asymptotics, arXiv preprint
arXiv:1607.06921 (2017).

The Askey Function

= The Askey function is said to belong to the class of positive
semi-definite functions (a continuous mapping from R — R)
with compact support on 6,

A(/v)—(l—Q)“—{(1—32“,0§h<9 |

if and only if > (d + 1)/2 and where h is the usual Euclidean
norm.

The Wendland Function

= Furrer et al. introduce the Wendland; and Wendland,
functions which give valid covariances in 3D with different
degrees of differentiability:

Wendland: (1 —);L (1 + 43)
4

) (1+6g+%)

> >

Wendlands: (1 —

The Wendland Function

= Furrer et al. introduce the Wendland; and Wendland,
functions which give valid covariances in 3D with different
degrees of differentiability:

A

)+(1+6g+335—9hf)

Wendland;: (1 —

> >

Wendlands: (1 —

= Their approach was to pair these with the Matern to form a
“tapered” covariance, defined as the product:

Rtap(h) = Rl\/latern(h) RWendland(h)

The Wendland Function

= Furrer et al. were able to show that in some important wayst
the tapered correlation function gave behaviour that was
largely indistinguishable from just using the Matern itself.

t Asymptotically equivalent MSPE (in the in-fill sense). See Stein: Interpolation of
Spatial Data: Some Theory for Kriging (1999) for further details.

The Wendland Function

= Furrer et al. were able to show that in some important wayst
the tapered correlation function gave behaviour that was
largely indistinguishable from just using the Matern itself.

= in particular, they recommend pairing Wendland; with the
Matern with v < 1.5 and Wendland, with Matern with v < 2.5.

t Asymptotically equivalent MSPE (in the in-fill sense). See Stein: Interpolation of
Spatial Data: Some Theory for Kriging (1999) for further details.

The Wendland Function

= Furrer et al. were able to show that in some important wayst
the tapered correlation function gave behaviour that was
largely indistinguishable from just using the Matern itself.

= in particular, they recommend pairing Wendland; with the
Matern with v < 1.5 and Wendland, with Matern with v < 2.5.

= The idea was to, in some sense, borrow properties of both the
Matern and the compactness of the Wendland in forming the
tapered correlation function.

t Asymptotically equivalent MSPE (in the in-fill sense). See Stein: Interpolation of
Spatial Data: Some Theory for Kriging (1999) for further details.

The Generalized Wendland Function

= Takes as parameters the input dimension and the the degree of
differentiability desired.

The Generalized Wendland Function

= Takes as parameters the input dimension and the the degree of
differentiability desired.

= Has been shown to be of the form A(h)Px(h) where A(h) is
the Askey function and Pi(h) is a polynomial of order k in h.

The Generalized Wendland Function

= Takes as parameters the input dimension and the the degree of
differentiability desired.

= Has been shown to be of the form A(h)Px(h) where A(h) is
the Askey function and Pi(h) is a polynomial of order k in h.

= The general form when k is not a positive integer is written in
terms of an integral (Bevilacqua et al.):

1 _
R(h) = m Jp u(u? = A1 — u)tdu, 0< h< 1
0, h>1

where B(-) is the Beta function.

The Generalized Wendland Function

Takes as parameters the input dimension and the the degree of
differentiability desired.

Has been shown to be of the form A(h)Px(h) where A(h) is
the Askey function and Pi(h) is a polynomial of order k in h.

The general form when k is not a positive integer is written in
terms of an integral (Bevilacqua et al.):

1 _
R(h) = m Jp u(u? = A1 — u)tdu, 0< h< 1
0, h>1

where B(+) is the Beta function.

Instead of tapering, we might view this as a more direct way of
specifying the compactness and differentiability properties one
seeks.

Wendland and friends

x=seq(0,1,length=100)
1l1=1ist(ml=abs(outer(x,x,"-")))
1.dez=1ist(11=11)

h=sqrt ((0-x)~2)

.gauss=rhogeodacecormat (1.dez,rho=0.001,alpha=2)$R
.exp=rhogeodacecormat (1.dez,rho=0.001,alpha=1)$R
.wendl=wendlandl(1l.dez,0.5)$R
.wend2=wendland2(1l.dez,0.5)$R
.gwl=generalized.wendland(l.dez,0.5,1)$R
.gw2=generalized.wendland(l.dez,0.5,2)$R
.gw3=generalized.wendland(l.dez,0.5,3)$R
.gw4=generalized.wendland(l.dez,0.5,4)$R

R
R
R
R
R
R
R
R

Wendland and friends

R(h)

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8

h

Grey=Gaussian and Exponential; Dashed=Wendland 1,2;
Dotted=Generalized Wendland with k=1,2,3,4

"Usual” GP model

Method n Computing
“Standard” 100-1,000 CPU
Franey et al (2012) 4,064 CPU+GPU

Paciorek et al (2013) 67,275 CPU+GPU Cluster

Approximate GP

Method Approximation n Computing
Kaufman et al (2012) Comp. Cov. 20,000 CPU
Eidsvik et al (2014) Comp. Lik. 173,405 GPU
Gramacy & Apley (2014) Local Approx. GP millions GPU
Parallel Bayesian Additive Regression Trees
Method Approximation n Computing
Pratola et al (2014) none 9 million+ CPU cluster

Scott et al (submitted) p BARTs on n/p more?

CPU cluster

