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Bayesian Regression Trees

= A more explicitly “divide-and-conquer” approach to the theme
of localization.

= Fit locally simple models to arrive at a more flexible global
model.

= Local models depend on subset of the data, increasing
computational scalability compared to GP regression.

= Tradeoff is model no longer interpolates observations.

= Fine for data which is observed with obserational error.

= Not ideal for deterministic simulator outputs, but we already
know approximations of various sorts are needed for this
problem.



Bayesian Single Tree Model

Figure 1: A Single Tree with Scalar Terminal Nodes
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Bayesian Single Tree Model

= To take a Bayesian approach, we need to define a stochastic
representation of this model.

= Let us call z(x) : R? — R for x € RY to be a mapping from
the inputs to the (unobserved) response function.

= And let us assume that the observed data, y(x;),i =1,...,nis
observed with i.i.d. Normally distributed error,

y(xi) = z(x;) +€i, €~ N(O,az).
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Bayesian Single Tree Model

= Previously, in the GP approach, we would place a GP prior on
the z(x) process and write the posterior of the parameters, p,
as
m(ply) < L(ply)m(p)
and we would predict the response function z using

r(z(x)ly) = / (2(x)|p, y)(ply)dp.

= What is the analogue for a stochastic representation of a
tree-process model?
= We need to identify parameters and specify priors on them.

= For example:
= Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.
= Some way of definining the connection between nodes to form a
stochastic tree.
= Terminal node parameters for those scalar “u's".
= Model complexity?
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are parameters associated with the terminal nodes.
= A realization of Z(x|7, M) is this:
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Bayesian Single Tree Model

= Given a (7, M), we can think of Z(x) as a random function
assigning a response value given a particular input, x.

= For instance, in the previous tree, conditional on 7, M that
gave us that picture, an input x such that x5 < c and x, > d
would have predicted response y(x) = up = 5.

= Qur task then is to specify priors on 7, M and derive an

algorithm for sampling the posterior distribution of these
parameters given data.

= Presumably, if our model definition is useful, we will be able to
predict our observations fairly well.



Model Variables

= What parameters are associated with the abstract
representation 77
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H.A. Chipman, E.l. George and R.E. McCulloch: BART: Bayesian Additive Regression
Trees, The Annals of Applied Statistics, vol.4, pp.266—-298 (2010).
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Model Variables

= What parameters are associated with the abstract
representation 77

= Nodes 11,75, .... These nodes are either internal or terminal.

= For each internal node 7);, there is an associated tuple v;, ¢;
which define the split rule x,, < ¢;.

= For each terminal node 7, there is an associated scalar
parameter ;.

= There are many ways one might specify a stochastic tree model
using these variables. We follow the generative process
described in a series of papers by Chipman, George and
McCulloch (CGM)t.

t H.A. Chipman, E.l. George and R.E. McCulloch: Bayesian CART Model Search,
Journal of the American Statistical Association, vol.93, pp.935-948 (1998).

H.A. Chipman, E.l. George and R.E. McCulloch: BART: Bayesian Additive Regression
Trees, The Annals of Applied Statistics, vol.4, pp.266—-298 (2010).
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Model Variables

Note that CGM do not specify edges, say e; for an edge
between 7; and 7; in their model.

This is because for such binary tree models, the presense of an
edge ej; is deterministic given that 7;,7; are in the tree.
Another way of saying this is that tree models are not arbitrary
graphical models where one might learn both the n;’s and the
ejj's.

For simplicity, a unique numbering system for nodes is
employed. 71 is the root node, and the expansion looks like:

m

2/ \77
7\ /{
N4 75 Ne 17



Priors

= Let Z represent the collection of indices of internal nodes 7;,
and B represent the collection of indices of terminal nodes n;.
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Priors

= Let Z represent the collection of indices of internal nodes 7;,
and B represent the collection of indices of terminal nodes n;.
=« The CGM priort is as follows:

m(0® T M) = ( ) (MIT)m(T)
= )HT( pj|nj)m(n; is terminal)
JjeB
X H 7(vk, ck|T \ k)7 (nk is internal)
keI

= Hw wjlnj)m(n; is terminal)
JjeB

X H mw(ck|vie, T \ i )m(vi|T \ mi)m(nx is interna

kel

1t H.A. Chipman, E.l. George and R.E. McCulloch: BART: Bayesian Additive
Regression Trees, The Annals of Applied Statistics, vol.4, pp.266—298 (2010).
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Priors

= The prior on a node being internal /terminal is given by the
so-called depth penalizing prior,

m(nj is internal) = a(1 + d(ﬁj,ﬁl))_ﬁ

where d(n;,n1) is the depth of node 7;, o € (0,1) and
B € [0,00), and correspondingly,

7(n; is terminal) = 1 — 7(7; is internal).

= Interpretation is probability a node splits (and is hence internal)
decreases the deeper that node is in the tree. In other words,

this prior favors shallower, sparser trees.



= Probability node is internal

Probability node splits

0.8
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0.4
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0.0

Priors

Depth Penalizing Prior

— a=0.95, b=2
a=0.6, b=2
a=0.95, b=1

Depth of node
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Priors

The prior on cutpoints ¢; is typically a discrete uniform
distribution over the cutpoints

{0, L ,...,”V_z,l}
n,—1 n,—1

where n, is a fixed, user-specified discretization resolution for
variable v.

The prior on variables v; is typically a discrete uniform
distribution over the variable indices

1,2,....,d}.
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Priors

The prior on the terminal node scalar parameters are i.i.d.
conjugate normal,

pil T~ N(,uu,ai) for all j€ B
= typically, we operate on mean-centered data and hence the prior

will have assumed mean p,, = 0.

The prior on the variance is conjugate
scaled-inverse-chisquared,

2 -2
o~ XV7T2

= this is a different, but still conjugate, prior than what we had
used in our GP model (where we used precision A ~ Gamma).
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Unconditional Realizations

= We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits

= If root node is terminal, draw p; from Normal prior.
= If root node is internal, draw v; and ¢; from Uniform priors.

2. Calculate prior probability node 2 splits

= If node 2 is terminal, draw py from Normal prior.
= If node 2 is internal, draw v» and ¢, from Uniform priorst.

3. etc.

7 Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.



Example: Unconditional Realization

set.seed(88)
cuts=seq(0.1,0.9,length=9)
nonterms=c ()

terms=c()

stop=FALSE

alpha=0.95

beta=2

d=0
psplit=alpha*(1+d)~ (-beta)
runif (1)<psplit

## [1] TRUE

nonterms=c (1)




Example: Unconditional Realization

psplit=alphax*(1+d)~(-beta)
runif (1)<psplit

## [1] TRUE

nonterms=c (nonterms, 2)

psplit=alpha*(1+d)~ (-beta)
runif (1)<psplit

## [1] FALSE




Example: Unconditional Realization

d=2

psplit=alpha*(1+d)~ (-beta)
runif (1)<psplit

## [1] FALSE

terms=c(terms,4)

psplit=alphax*(1+d)~(-beta)
runif (1)<psplit

## [1] FALSE

terms=c(terms,5)




Example: Unconditional Realization

variables=rep(0,length(nonterms))

cutpoints=rep(0,length(nonterms))
cutpoints[1]=sample(cuts,1)
cutpoints[1]

## [1] 0.9

cuts=cuts [cuts<cutpoints[1]]
cutpoints[2]=sample(cuts,1)
cutpoints[2]




Example: Unconditional Realization

tau2=1

mu=rep(0,length(terms))
for(i in 1:length(terms))
mu[i]=rnorm(1,mean=0,sd=sqrt(tau2))




Example: Unconditional Realization

plot (c(0,cutpoints[2]) ,rep(mull],2),type='1",
1lwd=2,x1lim=c(0,1) ,ylim=c(0,3) ,xlab="x",ylab="y")

lines(c(cutpoints[2],cutpoints[1]),rep(mu[2],2),1wd=2)
lines(c(cutpoints[1],1),rep(mul3],2),1wd=2)
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Unconditional Realization
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Example Realization with 2 predictorsy

Three different views of
a bivariate single tree.

/

t Source: E.I. George, BNPSKi (2014).
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Sampling the Posterior Distribution
= Recall, our observation model was
y(xi) = z(x;) + €

where ¢; ~ N(0, 2).

= Given observations y = (y1,...,Yn), we are interested in
sampling the posterior distribution

7(0?, T, Mly) x L(a?, T, Mly)n(c®)a(M|T)x(T)

= Conditional on a realization of our stochastic tree process, our
likelihood function is

L(o?, T, Mly) =

1 1 &
T (—M >0 - z(x,-)>2>
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Sampling the Posterior Distribution

Our MCMC algorithm will perform the following steps:

. Draw T|o?,y

= Metropolis-Hastings step via proposal distribution
. Draw M|T, 0%y

= Gibbs step using conjugate prior

. Draw 2|7, M,y

= Gibbs step using conjugate prior

We'll go in reverse order. ..



= We have

m(o?|v,7%) =

r

Draw 02|, M,y

2
()" ( wz>
=t ep | 5 | X s
g

SIS o

2072

(

)t



= We have

7T(O'2|V, 72) =

= So,

(o®|T, M,y)

where s

r

2 _ 1
_HZ'

Draw 02|, M,y

2072

NIR| o

(

)t

x Lo (—2}7 > (- z(x,-)f)

L2\
< vr? 1 vr?
726Xp ——F | X mexp —F




Draw 02|, M,y
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Draw 02|, M,y

: 1 (v+n) (vr24ns?
= And we recognize = exp (——202 <7y+n as the

kernel of a scaled-inverse-chisquared distribution, so

vr? 4+ n52)

02|T7May ~ X_2 <V+ n,
v—+n

= So we know how to perform the Gibbs step for o?.
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Draw M|T, 02,y

= What about the terminal node scalar mean parameters?

= Suppose there are B terminal nodes in tree 7T, nf, e ,nﬁ. It is
important to note the following factorization of the likelihood:

L(o®, T, Mly) o exp <—;2.§n:(yf—2(x,-))2>

1 & Z )
= ep| 55 (vi — 1))
O- .
J=1liy;enb
B nj
1 ! 5
= [lexw 5,2 (vi — 1)
. g
Jj=1 i:y,-Enf’

where n; is the number of observations mapping to terminal
nodes nf-’ and > ;nj = n.
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= In other words, conditional on 7T, the scalar terminal node
parameters are independent!



Draw M|T, 02,y

= In other words, conditional on 7T, the scalar terminal node
parameters are independent!

= So, we can simply write down the full conditional for each y;
and draw them sequentially using Gibbs steps.



Draw 1j|T, 0%y

= Assuming mean-centered observations, our prior is

T(1|T) = N(O, 7).



Draw 1j|T, 0%y

= Assuming mean-centered observations, our prior is
2
(1| T) = N(0,07,).

= Based on our results from awhile ago (slides 9), the full
conditional is

-1 _
2 n; 1 njyj n; 1
7T(MJIU,T,y)va(<az+Ug> (02>,<02+0£

V| .
where y; = I Zi:y,-enj? Vi



Draw T |02,y

= Sampling the posterior distributions of trees is more
complicated.

1 H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,
Journal of the American Statistical Association, vol.93, pp.935-948 (1998).
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Draw T |02,y

= Sampling the posterior distributions of trees is more
complicated.

= discrete, infinite-dimensional space

= need clever(?) Metropolis-Hastings proposals

= if (T — T') changes the number of terminal nodes in the tree,
what happens to the terminal node parameters, M?

= Chipman et al.t propose four basic proposals for mixing over
tree-space: Birth, Death, Change and Swap.

= We'll look at Birth and Death only for now.

1 H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,
Journal of the American Statistical Association, vol.93, pp.935-948 (1998).
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Figure 2: Tree Moves



Draw T |02,y

= A birth replaces an existing terminal node with a new decision
rule of the form “v < ¢” and introduces (births) two new
terminal nodes below the new decision rule.



Draw T |02,y

= A birth replaces an existing terminal node with a new decision
rule of the form “v < ¢” and introduces (births) two new
terminal nodes below the new decision rule.

= Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it's decision rule and instead becomes a
terminal node with a new parameter u.



Draw T |02,y

= A birth replaces an existing terminal node with a new decision
rule of the form “v < ¢” and introduces (births) two new
terminal nodes below the new decision rule.

= Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it's decision rule and instead becomes a
terminal node with a new parameter u.

= Note that if we transition from 7 — T via birth, then
B' = B+ 1 where B = | M|.



Draw T |02,y

A birth replaces an existing terminal node with a new decision
rule of the form “v < ¢” and introduces (births) two new
terminal nodes below the new decision rule.

Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it's decision rule and instead becomes a
terminal node with a new parameter u.

Note that if we transition from 7 — 7T via birth, then
B' = B+ 1 where B = | M|.
This means that when we birth, a previous terminal node

parameter p disappears and two new parameters, say 4 and
H(r) are born.
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A birth replaces an existing terminal node with a new decision
rule of the form “v < ¢” and introduces (births) two new
terminal nodes below the new decision rule.

Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it's decision rule and instead becomes a
terminal node with a new parameter u.

Note that if we transition from 7 — T via birth, then

B' = B+ 1 where B = | M|.

This means that when we birth, a previous terminal node
parameter p disappears and two new parameters, say 4 and
H(r) are born.

And when we death, two previous terminal node parameters,
vy and i), dissappear and a new parameter p is born.
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= The dimension-changing nature of tree proposals (at least
birth-death proposals) would appear to introduce some
challenges.

= How to construct such dimension-changing proposals is
explored in the Reversible-Jump Markov Chain Monte Carlo
(RIMCMC) work of Green (1995)f.

= Fortunately, Green (1995) shows that when the
dimension-changing parameter can be marginalized out, one
can proceed with the usual MH algorithm but using the
marginalized likelihood.

= For our conjugate Normal prior on the pu's, this marginal
likelihood is available.

t P.J. Green: Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination, Biometrika, vol.82, pp.711-732 (1995).



Marginal Likelihood

= Marginalizing the portion of the likelihood associated with
terminal node nf’, we have

L(nPlo?y) = / L7 g, 0%, y)m (1) dpg

Hj

(I will leave this as an excercise).
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Birth Proposal
We randomly generate 7 as follows:

. Randomly select a terminal node b € {1,..., B} with
probability £ where B = |M|.

. Introduce a new rule vp, ~ m,(vp) and cutpoint ¢, ~ mc(cp)
where 7, ¢ are typically discrete Uniform on the available
variable, cutpoints.

. Calculate

" w(Tlo?,y)a(T'[T)

. Generate u ~ Uniform(0,1). If u < « then accept 7’
otherwise reject.

- {1 W(T’Iazyy)q(TlT’)}



Birth Proposal

= In Step 3, note that

(T'|o?y) = L(nj’(,)IUQ,y)L(nf’(r)|02,y)7r(njbis internal)
xw(njl-’(,)is terminal)w(nj’(,)is terminal)

><7rv(vjb = Vb)ﬂ'c(Cjb = Cp)

and

q(T|T")=q(T" = T) = n(death proposal)
x 7 (kill nj’(,),nj’(,)|death proposal)

= (1 - 7-[-b)ﬂ-d,njl?'
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Birth Proposal

= Typically the probability of doing a birth proposal is 7, = %
= And Tdp is the probability of selecting node nj-’ to perform the
death.
= Usually this will be ﬁ where D’ is the number of
next-to-terminal-nodes in tree 7.

= An exception is when we have the root node as our tree
(obviously we can't perform a death). In this case 74 ,» = 0.
i)



Birth Proposal

= Analogously, for Step 3 note that
(Tlo%y) = L(njb\o2,y)7r(nf is terminal)

and

q(T'|T)=q(T —T') = mn(birth proposal)
x(birth at 17}’|birth proposal)
><7rv(vjb = vb)7r,_-(cf’ =cp)

= 7Tb7fb,nf77v(‘/jb = vp)me(cf = cp)
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Birth Proposal

= Typically 7, b = % where B is the number of terminal nodes
M
in tree 7.

= An exception is when, for example, there is no variable or
cutpoint available to birth at 77}’. In this case 7, o = 0.
)
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Death Proposals

= As you might imagine, it works similarly to Birth proposals.

= | will spare you the details.
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Algorithm

= Let's recap our sampling algorithm.

1. tDraw Tlo2,y
= With probability 7, do a birth proposal, otherwise a death
proposal.

2. Draw M|T, 0%,y
= Forj=1,...,B, perform our Gibbs steps by drawing
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o2 o2 o o2 o2

1 We might return to discussing more complex proposals for 7 later on. ..



Algorithm

= Let's recap our sampling algorithm.

[y

. {Draw Tlo2,y
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= Forj=1,...,B, perform our Gibbs steps by drawing

2 n; 1 -t nj)_/j n; 1 -t
wile, T,y~N{ |5+ = - |\ 5+=
o2 o2 o o2 o2

. Draw 2|7, M,y

N

w

1 We might return to discussing more complex proposals for 7 later on. ..



Algorithm

= Let's recap our sampling algorithm.

[y

. {Draw Tlo2,y
= With probability 7, do a birth proposal, otherwise a death
proposal.

. Draw M|T, 0%y
= Forj=1,...,B, perform our Gibbs steps by drawing

2 n; 1 -t nj)_/j n; 1 -t
wile, T,y~N{ |5+ = - |\ 5+=
o2 o2 o o2 o2

. Draw 2|7, M,y
= Perform our Gibbs step by drawing

N

w

2 2
_ VTS 4+ ns
AT My (v )

vV—+n

1 We might return to discussing more complex proposals for 7 later on. ..
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Calibrating the Tree Prior

= For the depth penalizing prior,
ol —d)=?

typical values are &« = 0.95 and 3 = 3.
= The variables are selected with a discrete uniform prior.
= The cutpoints are selected with a discrete uniform prior.

= The number of cutpoints is hyperparameter we can choose.
Default is numcuts = 100. This works well in general,
sometimes we might like a more refined grid, say
numcuts = 1,000.
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Calibrating the variance prior, w(c?|v, 72)

v is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with v = 3 being the default.

2

The scale parameter 7< is selected in the following way.

= Provide an initial estimate of the standard deviation of your
data, &. Typically the sample standard deviation.

= Provide an upper quantile g, with g = 0.90 being the default.

= 72 is selected so that, a priori, P(0 < §) = q.

The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

The smaller v the more concentrated on small ¢ the prior
becomes.
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Calibrating the mean prior, 7(u;|7T)

Assume the data is already mean-centered and scaled to
[-0.5,0.5].

Then the prior for p; ~ N(u“,afb) is set to have mean 1, =0
and the variance is chosen such that

ko, = 0.5.

In other words, this sets the prior up such that k standard
deviations cover the range of the observed data.

The greater is k, the more shrinkage a priori is applied to the
mean parameters. The default is k = 2.



Example

source("dace.sim.r")

set.seed(88)

n=5; k=1; rhotrue=0.2; lambdatrue=1
design=as.matrix(runif(n))

11=1ist (ml=outer(designl[,1],design[,1],"-"))
1.dez=1list(11=11)

R=rhogeodacecormat (1.dez,c(rhotrue))$R

L=t (chol(R))

u=rnorm(nrow(R))

z=L7*%u

y=as.vector(z)




Example

library (BayesTree)
preds=matrix(seq(0,1,length=100) ,ncol=1)

# Variance prior
shat=sd(y)

nu=3

q=0.90

# Mean prior
k=2

# Tree prior
alpha=0.95
beta=2

nc=100

# MCMC settings
N=1000
burn=1000




Example

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=

k=k ,power=beta,base=alpha,ntree=1,numcut=nc,
ndpost=N,nskip=burn)

##

##

## Running BART with numeric y

##

## number of trees: 1

## Prior:

## k: 2.000000

## degrees of freedom in sigma prior: 3
## quantile in sigma prior: 0.900000

## power and base for tree prior: 2.000000 0.950000
## use quantiles for rule cut points: O
## data:

## number of training observations: 5



Example

plot(design,y,pch=20,col="red",cex=2,xlim=c(0,1),
ylim=c(2.3,3.7) ,xlab="x",
main="Predicted mean response +/- 2s.d.")
for(i in 1:nrow(fit$yhat.test))
lines(preds,fit$yhat.test[i,],col="grey",1lwd=0.25)
mean=apply (fit$yhat.test,2,mean)

sd=apply(fit$yhat.test,2,sd)
lines(preds,mean-1.96%sd,1lwd=0.75,col="black")
lines(preds,mean+1.96*sd,lwd=0.75,col="black")
lines(preds,mean,lwd=2,col="blue")
points(design,y,pch=20,col="red")
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Example

plot(design,y,pch=20,col="red",cex=2,xlim=c(0,1) ,ylim=
xlab="x",main="Predicted median, q.025 and q.975")
for(i in 1:nrow(fit$yhat.test))
lines(preds,fit$yhat.test[i,],col="grey",lwd=0.25)
med=apply (fit$yhat.test,2,quantile,0.5)
q.025=apply(fit$yhat.test,2,quantile,0.025)

q.975=apply (fit$yhat.test,2,quantile,0.975)
lines(preds,q.025,1wd=0.75,col="black")
lines(preds,q.975,1wd=0.75,col="black")
lines(preds,med,lwd=2,col="blue")
points(design,y,pch=20,col="red")
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Example

nu=1

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=

k=k,power=beta,base=alpha,ntree=1,numcut=nc,
ndpost=N,nskip=burn)

##

##

## Running BART with numeric y

##

## number of trees: 1

## Prior:

## k: 2.000000

## degrees of freedom in sigma prior: 1
## quantile in sigma prior: 0.900000

## power and base for tree prior: 2.000000 0.950000
## wuse quantiles for rule cut points: O
## data:
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Predicted median, q.025 and q.975
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Example

nu=1
nc=1000
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=s

k=k,power=beta,base=alpha,ntree=1,numcut=nc,
ndpost=N,nskip=burn)

##

##

## Running BART with numeric y

##

## number of trees: 1

## Prior:

## k: 2.000000

## degrees of freedom in sigma prior: 1
## quantile in sigma prior: 0.900000

## power and base for tree prior: 2.000000 0.950000
## use quantiles for rule cut points: O
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Example
nu=1
k=1
nc=100

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=
k=k,power=beta,base=alpha,ntree=1,numcut=nc,
ndpost=N,nskip=burn)

##

##

## Running BART with numeric y

##

## number of trees: 1

## Prior:

## k: 1.000000

## degrees of freedom in sigma prior: 1

## quantile in sigma prior: 0.900000

## power and base for tree prior: 2.000000 0.950000
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