
Bayesian Regression Trees
STAT8810, Fall 2017

M.T. Pratola

October 17, 2017

Today
Bayesian Single-Tree Models

Bayesian Regression Trees

• A more explicitly “divide-and-conquer” approach to the theme
of localization.

• Fit locally simple models to arrive at a more flexible global
model.

• Local models depend on subset of the data, increasing
computational scalability compared to GP regression.

• Tradeo� is model no longer interpolates observations.

• Fine for data which is observed with obserational error.
• Not ideal for deterministic simulator outputs, but we already

know approximations of various sorts are needed for this
problem.

Bayesian Regression Trees

• A more explicitly “divide-and-conquer” approach to the theme
of localization.

• Fit locally simple models to arrive at a more flexible global
model.

• Local models depend on subset of the data, increasing
computational scalability compared to GP regression.

• Tradeo� is model no longer interpolates observations.

• Fine for data which is observed with obserational error.
• Not ideal for deterministic simulator outputs, but we already

know approximations of various sorts are needed for this
problem.

Bayesian Regression Trees

• A more explicitly “divide-and-conquer” approach to the theme
of localization.

• Fit locally simple models to arrive at a more flexible global
model.

• Local models depend on subset of the data, increasing
computational scalability compared to GP regression.

• Tradeo� is model no longer interpolates observations.

• Fine for data which is observed with obserational error.
• Not ideal for deterministic simulator outputs, but we already

know approximations of various sorts are needed for this
problem.

Bayesian Regression Trees

• A more explicitly “divide-and-conquer” approach to the theme
of localization.

• Fit locally simple models to arrive at a more flexible global
model.

• Local models depend on subset of the data, increasing
computational scalability compared to GP regression.

• Tradeo� is model no longer interpolates observations.

• Fine for data which is observed with obserational error.
• Not ideal for deterministic simulator outputs, but we already

know approximations of various sorts are needed for this
problem.

Bayesian Regression Trees

• A more explicitly “divide-and-conquer” approach to the theme
of localization.

• Fit locally simple models to arrive at a more flexible global
model.

• Local models depend on subset of the data, increasing
computational scalability compared to GP regression.

• Tradeo� is model no longer interpolates observations.
• Fine for data which is observed with obserational error.

• Not ideal for deterministic simulator outputs, but we already
know approximations of various sorts are needed for this
problem.

Bayesian Regression Trees

• A more explicitly “divide-and-conquer” approach to the theme
of localization.

• Fit locally simple models to arrive at a more flexible global
model.

• Local models depend on subset of the data, increasing
computational scalability compared to GP regression.

• Tradeo� is model no longer interpolates observations.
• Fine for data which is observed with obserational error.
• Not ideal for deterministic simulator outputs, but we already

know approximations of various sorts are needed for this
problem.

Bayesian Single Tree Model

The Coordinate View of g(x;")

x2 < d x2 % d

x5 < c x5 % c

µ3 = 7

µ1 = -2 µ2 = 5

Easy to see that g(x;") is just a step function

µ1 = -2 µ2 = 5

�
µ3 = 7

c

d x2

x5

8

Figure 1: A Single Tree with Scalar Terminal Nodes

Bayesian Single Tree Model

• To take a Bayesian approach, we need to define a stochastic
representation of this model.

• Let us call z(x) : Rd æ R for x œ Rd to be a mapping from
the inputs to the (unobserved) response function.

• And let us assume that the observed data, y(xi), i = 1, . . . , n is
observed with i.i.d. Normally distributed error,

y(xi) = z(xi) + ‘i , ‘i ≥ N(0, ‡2).

Bayesian Single Tree Model

• To take a Bayesian approach, we need to define a stochastic
representation of this model.

• Let us call z(x) : Rd æ R for x œ Rd to be a mapping from
the inputs to the (unobserved) response function.

• And let us assume that the observed data, y(xi), i = 1, . . . , n is
observed with i.i.d. Normally distributed error,

y(xi) = z(xi) + ‘i , ‘i ≥ N(0, ‡2).

Bayesian Single Tree Model

• To take a Bayesian approach, we need to define a stochastic
representation of this model.

• Let us call z(x) : Rd æ R for x œ Rd to be a mapping from
the inputs to the (unobserved) response function.

• And let us assume that the observed data, y(xi), i = 1, . . . , n is
observed with i.i.d. Normally distributed error,

y(xi) = z(xi) + ‘i , ‘i ≥ N(0, ‡2).

Bayesian Single Tree Model
• Previously, in the GP approach, we would place a GP prior on

the z(x) process and write the posterior of the parameters, fl,
as

fi(fl|y) Ã L(fl|y)fi(fl)
and we would predict the response function z using

fi(z(x)|y) =
⁄

fl
fi(z(x)|fl, y)fi(fl|y)dfl.

• What is the analogue for a stochastic representation of a
tree-process model?

• We need to identify parameters and specify priors on them.

• For example:

• Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.

• Some way of definining the connection between nodes to form a
stochastic tree.

• Terminal node parameters for those scalar “µ’s”.
• Model complexity?

Bayesian Single Tree Model
• Previously, in the GP approach, we would place a GP prior on

the z(x) process and write the posterior of the parameters, fl,
as

fi(fl|y) Ã L(fl|y)fi(fl)
and we would predict the response function z using

fi(z(x)|y) =
⁄

fl
fi(z(x)|fl, y)fi(fl|y)dfl.

• What is the analogue for a stochastic representation of a
tree-process model?

• We need to identify parameters and specify priors on them.
• For example:

• Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.

• Some way of definining the connection between nodes to form a
stochastic tree.

• Terminal node parameters for those scalar “µ’s”.
• Model complexity?

Bayesian Single Tree Model
• Previously, in the GP approach, we would place a GP prior on

the z(x) process and write the posterior of the parameters, fl,
as

fi(fl|y) Ã L(fl|y)fi(fl)
and we would predict the response function z using

fi(z(x)|y) =
⁄

fl
fi(z(x)|fl, y)fi(fl|y)dfl.

• What is the analogue for a stochastic representation of a
tree-process model?

• We need to identify parameters and specify priors on them.

• For example:

• Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.

• Some way of definining the connection between nodes to form a
stochastic tree.

• Terminal node parameters for those scalar “µ’s”.
• Model complexity?

Bayesian Single Tree Model
• Previously, in the GP approach, we would place a GP prior on

the z(x) process and write the posterior of the parameters, fl,
as

fi(fl|y) Ã L(fl|y)fi(fl)
and we would predict the response function z using

fi(z(x)|y) =
⁄

fl
fi(z(x)|fl, y)fi(fl|y)dfl.

• What is the analogue for a stochastic representation of a
tree-process model?

• We need to identify parameters and specify priors on them.
• For example:

• Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.

• Some way of definining the connection between nodes to form a
stochastic tree.

• Terminal node parameters for those scalar “µ’s”.
• Model complexity?

Bayesian Single Tree Model
• Previously, in the GP approach, we would place a GP prior on

the z(x) process and write the posterior of the parameters, fl,
as

fi(fl|y) Ã L(fl|y)fi(fl)
and we would predict the response function z using

fi(z(x)|y) =
⁄

fl
fi(z(x)|fl, y)fi(fl|y)dfl.

• What is the analogue for a stochastic representation of a
tree-process model?

• We need to identify parameters and specify priors on them.
• For example:

• Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.

• Some way of definining the connection between nodes to form a
stochastic tree.

• Terminal node parameters for those scalar “µ’s”.
• Model complexity?

Bayesian Single Tree Model
• Previously, in the GP approach, we would place a GP prior on

the z(x) process and write the posterior of the parameters, fl,
as

fi(fl|y) Ã L(fl|y)fi(fl)
and we would predict the response function z using

fi(z(x)|y) =
⁄

fl
fi(z(x)|fl, y)fi(fl|y)dfl.

• What is the analogue for a stochastic representation of a
tree-process model?

• We need to identify parameters and specify priors on them.
• For example:

• Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.

• Some way of definining the connection between nodes to form a
stochastic tree.

• Terminal node parameters for those scalar “µ’s”.
• Model complexity?

had

Bayesian Single Tree Model
• Previously, in the GP approach, we would place a GP prior on

the z(x) process and write the posterior of the parameters, fl,
as

fi(fl|y) Ã L(fl|y)fi(fl)
and we would predict the response function z using

fi(z(x)|y) =
⁄

fl
fi(z(x)|fl, y)fi(fl|y)dfl.

• What is the analogue for a stochastic representation of a
tree-process model?

• We need to identify parameters and specify priors on them.
• For example:

• Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.

• Some way of definining the connection between nodes to form a
stochastic tree.

• Terminal node parameters for those scalar “µ’s”.

• Model complexity?

Bayesian Single Tree Model
• Previously, in the GP approach, we would place a GP prior on

the z(x) process and write the posterior of the parameters, fl,
as

fi(fl|y) Ã L(fl|y)fi(fl)
and we would predict the response function z using

fi(z(x)|y) =
⁄

fl
fi(z(x)|fl, y)fi(fl|y)dfl.

• What is the analogue for a stochastic representation of a
tree-process model?

• We need to identify parameters and specify priors on them.
• For example:

• Internal node parameter variables - what variable is used in a
split rule and what value that variable is split at.

• Some way of definining the connection between nodes to form a
stochastic tree.

• Terminal node parameters for those scalar “µ’s”.
• Model complexity?

Bayesian Single Tree Model
• So, think Z (x) := Z (x|T , M), where T are parameters

associated with the internal configuration of the tree and M
are parameters associated with the terminal nodes.

• A realization of Z (x|T , M) is this:

Bayesian Single Tree Model
• So, think Z (x) := Z (x|T , M), where T are parameters

associated with the internal configuration of the tree and M
are parameters associated with the terminal nodes.

• A realization of Z (x|T , M) is this:

The Coordinate View of g(x;")

x2 < d x2 % d

x5 < c x5 % c

µ3 = 7

µ1 = -2 µ2 = 5

Easy to see that g(x;") is just a step function

µ1 = -2 µ2 = 5

�
µ3 = 7

c

d x2

x5

8

Bayesian Single Tree Model

• Given a (T , M), we can think of Z (x) as a random function
assigning a response value given a particular input, x.

• For instance, in the previous tree, conditional on T , M that
gave us that picture, an input x such that x5 < c and x2 > d
would have predicted response ŷ(x) © µ2 = 5.

• Our task then is to specify priors on T , M and derive an
algorithm for sampling the posterior distribution of these
parameters given data.

• Presumably, if our model definition is useful, we will be able to
predict our observations fairly well.

Bayesian Single Tree Model

• Given a (T , M), we can think of Z (x) as a random function
assigning a response value given a particular input, x.

• For instance, in the previous tree, conditional on T , M that
gave us that picture, an input x such that x5 < c and x2 > d
would have predicted response ŷ(x) © µ2 = 5.

• Our task then is to specify priors on T , M and derive an
algorithm for sampling the posterior distribution of these
parameters given data.

• Presumably, if our model definition is useful, we will be able to
predict our observations fairly well.

Bayesian Single Tree Model

• Given a (T , M), we can think of Z (x) as a random function
assigning a response value given a particular input, x.

• For instance, in the previous tree, conditional on T , M that
gave us that picture, an input x such that x5 < c and x2 > d
would have predicted response ŷ(x) © µ2 = 5.

• Our task then is to specify priors on T , M and derive an
algorithm for sampling the posterior distribution of these
parameters given data.

• Presumably, if our model definition is useful, we will be able to
predict our observations fairly well.

Bayesian Single Tree Model

• Given a (T , M), we can think of Z (x) as a random function
assigning a response value given a particular input, x.

• For instance, in the previous tree, conditional on T , M that
gave us that picture, an input x such that x5 < c and x2 > d
would have predicted response ŷ(x) © µ2 = 5.

• Our task then is to specify priors on T , M and derive an
algorithm for sampling the posterior distribution of these
parameters given data.

• Presumably, if our model definition is useful, we will be able to
predict our observations fairly well.

Model Variables
• What parameters are associated with the abstract

representation T ?

• Nodes ÷1, ÷2, These nodes are either internal or terminal.
• For each internal node ÷i , there is an associated tuple vi , ci

which define the split rule xvi
< ci .

• For each terminal node ÷j , there is an associated scalar
parameter µj .

• There are many ways one might specify a stochastic tree model
using these variables. We follow the generative process
described in a series of papers by Chipman, George and
McCulloch (CGM)†.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

H.A. Chipman, E.I. George and R.E. McCulloch: BART: Bayesian Additive Regression

Trees, The Annals of Applied Statistics, vol.4, pp.266–298 (2010).

Model Variables
• What parameters are associated with the abstract

representation T ?
• Nodes ÷1, ÷2, These nodes are either internal or terminal.

• For each internal node ÷i , there is an associated tuple vi , ci

which define the split rule xvi
< ci .

• For each terminal node ÷j , there is an associated scalar
parameter µj .

• There are many ways one might specify a stochastic tree model
using these variables. We follow the generative process
described in a series of papers by Chipman, George and
McCulloch (CGM)†.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

H.A. Chipman, E.I. George and R.E. McCulloch: BART: Bayesian Additive Regression

Trees, The Annals of Applied Statistics, vol.4, pp.266–298 (2010).

Model Variables
• What parameters are associated with the abstract

representation T ?
• Nodes ÷1, ÷2, These nodes are either internal or terminal.
• For each internal node ÷i , there is an associated tuple vi , ci

which define the split rule xvi
< ci .

• For each terminal node ÷j , there is an associated scalar
parameter µj .

• There are many ways one might specify a stochastic tree model
using these variables. We follow the generative process
described in a series of papers by Chipman, George and
McCulloch (CGM)†.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

H.A. Chipman, E.I. George and R.E. McCulloch: BART: Bayesian Additive Regression

Trees, The Annals of Applied Statistics, vol.4, pp.266–298 (2010).

Model Variables
• What parameters are associated with the abstract

representation T ?
• Nodes ÷1, ÷2, These nodes are either internal or terminal.
• For each internal node ÷i , there is an associated tuple vi , ci

which define the split rule xvi
< ci .

• For each terminal node ÷j , there is an associated scalar
parameter µj .

• There are many ways one might specify a stochastic tree model
using these variables. We follow the generative process
described in a series of papers by Chipman, George and
McCulloch (CGM)†.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

H.A. Chipman, E.I. George and R.E. McCulloch: BART: Bayesian Additive Regression

Trees, The Annals of Applied Statistics, vol.4, pp.266–298 (2010).

Model Variables
• What parameters are associated with the abstract

representation T ?
• Nodes ÷1, ÷2, These nodes are either internal or terminal.
• For each internal node ÷i , there is an associated tuple vi , ci

which define the split rule xvi
< ci .

• For each terminal node ÷j , there is an associated scalar
parameter µj .

• There are many ways one might specify a stochastic tree model
using these variables. We follow the generative process
described in a series of papers by Chipman, George and
McCulloch (CGM)†.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

H.A. Chipman, E.I. George and R.E. McCulloch: BART: Bayesian Additive Regression

Trees, The Annals of Applied Statistics, vol.4, pp.266–298 (2010).

Model Variables
• Note that CGM do not specify edges, say eij for an edge

between ÷i and ÷j in their model.

• This is because for such binary tree models, the presense of an
edge eij is deterministic given that ÷i , ÷j are in the tree.

• Another way of saying this is that tree models are not arbitrary
graphical models where one might learn both the ÷i ’s and the
eij ’s.

• For simplicity, a unique numbering system for nodes is
employed. ÷1 is the root node, and the expansion looks like:

÷1

÷2 ÷3

÷4 ÷5 ÷6 ÷7

...

Model Variables
• Note that CGM do not specify edges, say eij for an edge

between ÷i and ÷j in their model.
• This is because for such binary tree models, the presense of an

edge eij is deterministic given that ÷i , ÷j are in the tree.

• Another way of saying this is that tree models are not arbitrary
graphical models where one might learn both the ÷i ’s and the
eij ’s.

• For simplicity, a unique numbering system for nodes is
employed. ÷1 is the root node, and the expansion looks like:

÷1

÷2 ÷3

÷4 ÷5 ÷6 ÷7

...

Model Variables
• Note that CGM do not specify edges, say eij for an edge

between ÷i and ÷j in their model.
• This is because for such binary tree models, the presense of an

edge eij is deterministic given that ÷i , ÷j are in the tree.
• Another way of saying this is that tree models are not arbitrary

graphical models where one might learn both the ÷i ’s and the
eij ’s.

• For simplicity, a unique numbering system for nodes is
employed. ÷1 is the root node, and the expansion looks like:

÷1

÷2 ÷3

÷4 ÷5 ÷6 ÷7

...

Model Variables
• Note that CGM do not specify edges, say eij for an edge

between ÷i and ÷j in their model.
• This is because for such binary tree models, the presense of an

edge eij is deterministic given that ÷i , ÷j are in the tree.
• Another way of saying this is that tree models are not arbitrary

graphical models where one might learn both the ÷i ’s and the
eij ’s.

• For simplicity, a unique numbering system for nodes is
employed. ÷1 is the root node, and the expansion looks like:

÷1

÷2 ÷3

÷4 ÷5 ÷6 ÷7

...

Is ,

Priors
• Let I represent the collection of indices of internal nodes ÷i ,

and B represent the collection of indices of terminal nodes ÷i .

• The CGM prior† is as follows:

fi(‡2, T , M) = fi(‡2)fi(M|T)fi(T)
= fi(‡2)

Ÿ

jœB
fi(µj |÷j)fi(÷j is terminal)

◊
Ÿ

kœI
fi(vk , ck |T \ ÷k)fi(÷k is internal)

= fi(‡2)
Ÿ

jœB
fi(µj |÷j)fi(÷j is terminal)

◊
Ÿ

kœI
fi(ck |vk , T \ ÷k)fi(vk |T \ ÷k)fi(÷k is internal)

† H.A. Chipman, E.I. George and R.E. McCulloch: BART: Bayesian Additive

Regression Trees, The Annals of Applied Statistics, vol.4, pp.266–298 (2010).

M.T. Pratola: E�cient Metropolis–Hastings Proposal Mechanisms for Bayesian

Regression Tree Models, Bayesian Analysis, vol.11, pp.885–911 (2016).

Priors
• Let I represent the collection of indices of internal nodes ÷i ,

and B represent the collection of indices of terminal nodes ÷i .
• The CGM prior† is as follows:

fi(‡2, T , M) = fi(‡2)fi(M|T)fi(T)
= fi(‡2)

Ÿ

jœB
fi(µj |÷j)fi(÷j is terminal)

◊
Ÿ

kœI
fi(vk , ck |T \ ÷k)fi(÷k is internal)

= fi(‡2)
Ÿ

jœB
fi(µj |÷j)fi(÷j is terminal)

◊
Ÿ

kœI
fi(ck |vk , T \ ÷k)fi(vk |T \ ÷k)fi(÷k is internal)

† H.A. Chipman, E.I. George and R.E. McCulloch: BART: Bayesian Additive

Regression Trees, The Annals of Applied Statistics, vol.4, pp.266–298 (2010).

M.T. Pratola: E�cient Metropolis–Hastings Proposal Mechanisms for Bayesian

Regression Tree Models, Bayesian Analysis, vol.11, pp.885–911 (2016).

Priors

• The prior on a node being internal/terminal is given by the
so-called depth penalizing prior,

fi(÷j is internal) = –(1 + d(÷j , ÷1))≠—

where d(÷j , ÷1) is the depth of node ÷j , – œ (0, 1) and
— œ [0, Œ), and correspondingly,

fi(÷j is terminal) = 1 ≠ fi(÷j is internal).

• Interpretation is probability a node splits (and is hence internal)
decreases the deeper that node is in the tree. In other words,
this prior favors shallower, sparser trees.

Priors

• The prior on a node being internal/terminal is given by the
so-called depth penalizing prior,

fi(÷j is internal) = –(1 + d(÷j , ÷1))≠—

where d(÷j , ÷1) is the depth of node ÷j , – œ (0, 1) and
— œ [0, Œ), and correspondingly,

fi(÷j is terminal) = 1 ≠ fi(÷j is internal).

• Interpretation is probability a node splits (and is hence internal)
decreases the deeper that node is in the tree. In other words,
this prior favors shallower, sparser trees.

.

Priors

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Depth of node

Pr
ob

ab
ilit

y
no

de
 s

pl
its

 =
 P

ro
ba

bi
lit

y
no

de
 is

 in
te

rn
al

Depth Penalizing Prior

a=0.95, b=2
a=0.6, b=2
a=0.95, b=1

Priors

• The prior on cutpoints ci is typically a discrete uniform
distribution over the cutpoints

;
0,

1
nv ≠ 1 , . . . ,

nv ≠ 2
nv ≠ 1 , 1

<

where nv is a fixed, user-specified discretization resolution for
variable v .

• The prior on variables vi is typically a discrete uniform
distribution over the variable indices

{1, 2, . . . , d}.

Priors

• The prior on cutpoints ci is typically a discrete uniform
distribution over the cutpoints

;
0,

1
nv ≠ 1 , . . . ,

nv ≠ 2
nv ≠ 1 , 1

<

where nv is a fixed, user-specified discretization resolution for
variable v .

• The prior on variables vi is typically a discrete uniform
distribution over the variable indices

{1, 2, . . . , d}.

Priors

• The prior on the terminal node scalar parameters are i.i.d.
conjugate normal,

µj |T ≥ N(µµ, ‡2

µ) for all j œ B

• typically, we operate on mean-centered data and hence the prior
will have assumed mean µµ = 0.

• The prior on the variance is conjugate
scaled-inverse-chisquared,

‡2 ≥ ‰≠2

‹,·2

• this is a di�erent, but still conjugate, prior than what we had
used in our GP model (where we used precision ⁄ ≥ Gamma).

Priors

• The prior on the terminal node scalar parameters are i.i.d.
conjugate normal,

µj |T ≥ N(µµ, ‡2

µ) for all j œ B

• typically, we operate on mean-centered data and hence the prior
will have assumed mean µµ = 0.

• The prior on the variance is conjugate
scaled-inverse-chisquared,

‡2 ≥ ‰≠2

‹,·2

• this is a di�erent, but still conjugate, prior than what we had
used in our GP model (where we used precision ⁄ ≥ Gamma).

Priors

• The prior on the terminal node scalar parameters are i.i.d.
conjugate normal,

µj |T ≥ N(µµ, ‡2

µ) for all j œ B

• typically, we operate on mean-centered data and hence the prior
will have assumed mean µµ = 0.

• The prior on the variance is conjugate
scaled-inverse-chisquared,

‡2 ≥ ‰≠2

‹,·2

• this is a di�erent, but still conjugate, prior than what we had
used in our GP model (where we used precision ⁄ ≥ Gamma).

Priors

• The prior on the terminal node scalar parameters are i.i.d.
conjugate normal,

µj |T ≥ N(µµ, ‡2

µ) for all j œ B

• typically, we operate on mean-centered data and hence the prior
will have assumed mean µµ = 0.

• The prior on the variance is conjugate
scaled-inverse-chisquared,

‡2 ≥ ‰≠2

‹,·2

• this is a di�erent, but still conjugate, prior than what we had
used in our GP model (where we used precision ⁄ ≥ Gamma).

Unconditional Realizations

• We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits

• If root node is terminal, draw µ1 from Normal prior.
• If root node is internal, draw v1 and c1 from Uniform priors.

2. Calculate prior probability node 2 splits

• If node 2 is terminal, draw µ2 from Normal prior.
• If node 2 is internal, draw v2 and c2 from Uniform priors†.

3. etc.

† Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.

Unconditional Realizations

• We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits

• If root node is terminal, draw µ1 from Normal prior.
• If root node is internal, draw v1 and c1 from Uniform priors.

2. Calculate prior probability node 2 splits

• If node 2 is terminal, draw µ2 from Normal prior.
• If node 2 is internal, draw v2 and c2 from Uniform priors†.

3. etc.

† Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.

Unconditional Realizations

• We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits
• If root node is terminal, draw µ1 from Normal prior.

• If root node is internal, draw v1 and c1 from Uniform priors.

2. Calculate prior probability node 2 splits

• If node 2 is terminal, draw µ2 from Normal prior.
• If node 2 is internal, draw v2 and c2 from Uniform priors†.

3. etc.

† Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.

Unconditional Realizations

• We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits
• If root node is terminal, draw µ1 from Normal prior.
• If root node is internal, draw v1 and c1 from Uniform priors.

2. Calculate prior probability node 2 splits

• If node 2 is terminal, draw µ2 from Normal prior.
• If node 2 is internal, draw v2 and c2 from Uniform priors†.

3. etc.

† Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.

Unconditional Realizations

• We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits
• If root node is terminal, draw µ1 from Normal prior.
• If root node is internal, draw v1 and c1 from Uniform priors.

2. Calculate prior probability node 2 splits

• If node 2 is terminal, draw µ2 from Normal prior.
• If node 2 is internal, draw v2 and c2 from Uniform priors†.

3. etc.

† Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.

Unconditional Realizations

• We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits
• If root node is terminal, draw µ1 from Normal prior.
• If root node is internal, draw v1 and c1 from Uniform priors.

2. Calculate prior probability node 2 splits
• If node 2 is terminal, draw µ2 from Normal prior.

• If node 2 is internal, draw v2 and c2 from Uniform priors†.

3. etc.

† Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.

Unconditional Realizations

• We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits
• If root node is terminal, draw µ1 from Normal prior.
• If root node is internal, draw v1 and c1 from Uniform priors.

2. Calculate prior probability node 2 splits
• If node 2 is terminal, draw µ2 from Normal prior.
• If node 2 is internal, draw v2 and c2 from Uniform priors†.

3. etc.

† Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.

Unconditional Realizations

• We could draw unconditional realizations of our stochastic
regression tree process:

1. Calculate prior probability the root node splits
• If root node is terminal, draw µ1 from Normal prior.
• If root node is internal, draw v1 and c1 from Uniform priors.

2. Calculate prior probability node 2 splits
• If node 2 is terminal, draw µ2 from Normal prior.
• If node 2 is internal, draw v2 and c2 from Uniform priors†.

3. etc.

† Note that the variables and cutpoints available at non-root nodes
may (very likely) depend on the ancestral part of the tree.

Example: Unconditional Realization
set.seed(88)

cuts=seq(0.1,0.9,length=9)

nonterms=c()

terms=c()

stop=FALSE

alpha=0.95

beta=2

Node 1

d=0

psplit=alpha*(1+d)^(-beta)

runif(1)<psplit

[1] TRUE

nonterms=c(1)

Example: Unconditional Realization
Nodes 2,3

d=1

Node 2

psplit=alpha*(1+d)^(-beta)

runif(1)<psplit

[1] TRUE

nonterms=c(nonterms,2)

Node 3

psplit=alpha*(1+d)^(-beta)

runif(1)<psplit

[1] FALSE

terms=c(3)

Example: Unconditional Realization
Nodes 4,5

d=2

Node 4

psplit=alpha*(1+d)^(-beta)

runif(1)<psplit

[1] FALSE

terms=c(terms,4)

Node 5

psplit=alpha*(1+d)^(-beta)

runif(1)<psplit

[1] FALSE

terms=c(terms,5)

Nowhere left to grow.

Example: Unconditional Realization
Now select variable, cutpoints for internal nodes

Since we have only 1 variable, its always used in splits

variables=rep(0,length(nonterms))

Now get cuts

cutpoints=rep(0,length(nonterms))

cutpoints[1]=sample(cuts,1)

cutpoints[1]

[1] 0.9

Now get cut for node 2

cuts=cuts[cuts<cutpoints[1]]

cutpoints[2]=sample(cuts,1)

cutpoints[2]

[1] 0.1

Example: Unconditional Realization

Now draw terminal node parameters from N(0,tau^2)

tau2=1

mu=rep(0,length(terms))

for(i in 1:length(terms))

mu[i]=rnorm(1,mean=0,sd=sqrt(tau2))

Example: Unconditional Realization

Now plot the function represented by our tree

plot(c(0,cutpoints[2]),rep(mu[1],2),type=�l�,

lwd=2,xlim=c(0,1),ylim=c(0,3),xlab="x",ylab="y")

lines(c(cutpoints[2],cutpoints[1]),rep(mu[2],2),lwd=2)

lines(c(cutpoints[1],1),rep(mu[3],2),lwd=2)

Example: Unconditional Realization

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

Example Realization with 2 predictors†

† Source: E.I. George, BNPSKi (2014).

.

Sampling the Posterior Distribution
• Recall, our observation model was

y(xi) = z(xi) + ‘i

where ‘i ≥ N(0, ‡2).

• Given observations y = (y1, . . . , yn), we are interested in
sampling the posterior distribution

fi(‡2, T , M|y) Ã L(‡2, T , M|y)fi(‡2)fi(M|T)fi(T)

• Conditional on a realization of our stochastic tree process, our
likelihood function is

L(‡2, T , M|y) = 1Ô
2fi‡n

exp
A

≠ 1
2‡2

nÿ

i=1

(yi ≠ z(xi))2

B

Sampling the Posterior Distribution
• Recall, our observation model was

y(xi) = z(xi) + ‘i

where ‘i ≥ N(0, ‡2).
• Given observations y = (y1, . . . , yn), we are interested in

sampling the posterior distribution

fi(‡2, T , M|y) Ã L(‡2, T , M|y)fi(‡2)fi(M|T)fi(T)

• Conditional on a realization of our stochastic tree process, our
likelihood function is

L(‡2, T , M|y) = 1Ô
2fi‡n

exp
A

≠ 1
2‡2

nÿ

i=1

(yi ≠ z(xi))2

B

Sampling the Posterior Distribution
• Recall, our observation model was

y(xi) = z(xi) + ‘i

where ‘i ≥ N(0, ‡2).
• Given observations y = (y1, . . . , yn), we are interested in

sampling the posterior distribution

fi(‡2, T , M|y) Ã L(‡2, T , M|y)fi(‡2)fi(M|T)fi(T)

• Conditional on a realization of our stochastic tree process, our
likelihood function is

L(‡2, T , M|y) = 1Ô
2fi‡n

exp
A

≠ 1
2‡2

nÿ

i=1

(yi ≠ z(xi))2

B

Sampling the Posterior Distribution

• Our MCMC algorithm will perform the following steps:

1. Draw T |‡2, y

• Metropolis-Hastings step via proposal distribution

2. Draw M|T , ‡2, y

• Gibbs step using conjugate prior

3. Draw ‡2|T , M, y

• Gibbs step using conjugate prior

• We’ll go in reverse order. . .

Sampling the Posterior Distribution

• Our MCMC algorithm will perform the following steps:

1. Draw T |‡2, y

• Metropolis-Hastings step via proposal distribution

2. Draw M|T , ‡2, y

• Gibbs step using conjugate prior

3. Draw ‡2|T , M, y

• Gibbs step using conjugate prior

• We’ll go in reverse order. . .

Sampling the Posterior Distribution

• Our MCMC algorithm will perform the following steps:

1. Draw T |‡2, y
• Metropolis-Hastings step via proposal distribution

2. Draw M|T , ‡2, y

• Gibbs step using conjugate prior

3. Draw ‡2|T , M, y

• Gibbs step using conjugate prior

• We’ll go in reverse order. . .

Sampling the Posterior Distribution

• Our MCMC algorithm will perform the following steps:

1. Draw T |‡2, y
• Metropolis-Hastings step via proposal distribution

2. Draw M|T , ‡2, y

• Gibbs step using conjugate prior

3. Draw ‡2|T , M, y

• Gibbs step using conjugate prior

• We’ll go in reverse order. . .

Sampling the Posterior Distribution

• Our MCMC algorithm will perform the following steps:

1. Draw T |‡2, y
• Metropolis-Hastings step via proposal distribution

2. Draw M|T , ‡2, y
• Gibbs step using conjugate prior

3. Draw ‡2|T , M, y

• Gibbs step using conjugate prior

• We’ll go in reverse order. . .

Sampling the Posterior Distribution

• Our MCMC algorithm will perform the following steps:

1. Draw T |‡2, y
• Metropolis-Hastings step via proposal distribution

2. Draw M|T , ‡2, y
• Gibbs step using conjugate prior

3. Draw ‡2|T , M, y

• Gibbs step using conjugate prior

• We’ll go in reverse order. . .

Sampling the Posterior Distribution

• Our MCMC algorithm will perform the following steps:

1. Draw T |‡2, y
• Metropolis-Hastings step via proposal distribution

2. Draw M|T , ‡2, y
• Gibbs step using conjugate prior

3. Draw ‡2|T , M, y
• Gibbs step using conjugate prior

• We’ll go in reverse order. . .

Sampling the Posterior Distribution

• Our MCMC algorithm will perform the following steps:

1. Draw T |‡2, y
• Metropolis-Hastings step via proposal distribution

2. Draw M|T , ‡2, y
• Gibbs step using conjugate prior

3. Draw ‡2|T , M, y
• Gibbs step using conjugate prior

• We’ll go in reverse order. . .

Draw ‡2|T , M, y
• We have

fi(‡2|‹, ·2) =

1
‹·2

2

2‹/2

�
!‹

2

"
‡‹+2

exp
A

≠‹·2

2‡2

B

Ã 1
‡‹+2

exp
A

≠‹·2

2‡2

B

• So,

fi(‡2|T , M, y) Ã 1
‡n

exp
A

≠ 1
2‡2

nÿ

i=1

(yi ≠ z(xi))2

B

◊ 1
‡‹+2

exp
A

≠‹·2

2‡2

B

= 1
‡(‹+n)+2

exp
A

≠(‹ + n)
2‡2

A
‹·2 + ns2

‹ + n

BB

where s2 = 1

n

q
n

i=1 (yi ≠ z(xi))2 .

Draw ‡2|T , M, y
• We have

fi(‡2|‹, ·2) =

1
‹·2

2

2‹/2

�
!‹

2

"
‡‹+2

exp
A

≠‹·2

2‡2

B

Ã 1
‡‹+2

exp
A

≠‹·2

2‡2

B

• So,

fi(‡2|T , M, y) Ã 1
‡n

exp
A

≠ 1
2‡2

nÿ

i=1

(yi ≠ z(xi))2

B

◊ 1
‡‹+2

exp
A

≠‹·2

2‡2

B

= 1
‡(‹+n)+2

exp
A

≠(‹ + n)
2‡2

A
‹·2 + ns2

‹ + n

BB

where s2 = 1

n

q
n

i=1 (yi ≠ z(xi))2 .

Draw ‡2|T , M, y

• And we recognize 1

‡(‹+n)+2
exp

1
≠ (‹+n)

2‡2

1
‹·2

+ns
2

‹+n

22
as the

kernel of a scaled-inverse-chisquared distribution, so

‡2|T , M, y ≥ ‰≠2

A

‹ + n,
‹·2 + ns2

‹ + n

B

• So we know how to perform the Gibbs step for ‡2.

Draw ‡2|T , M, y

• And we recognize 1

‡(‹+n)+2
exp

1
≠ (‹+n)

2‡2

1
‹·2

+ns
2

‹+n

22
as the

kernel of a scaled-inverse-chisquared distribution, so

‡2|T , M, y ≥ ‰≠2

A

‹ + n,
‹·2 + ns2

‹ + n

B

• So we know how to perform the Gibbs step for ‡2.

Draw M|T , ‡2, y
• What about the terminal node scalar mean parameters?

• Suppose there are B terminal nodes in tree T , ÷b
1
, . . . , ÷b

b
. It is

important to note the following factorization of the likelihood:

L(‡2, T , M|y) Ã exp
A

≠ 1
2‡2

nÿ

i=1

(yi ≠ z(xi))2

B

= exp

Q

ca≠ 1
2‡2

Bÿ

j=1

njÿ

i :yi œ÷b

j

(yi ≠ µj)2

R

db

=
BŸ

j=1

exp

Q

ca≠ 1
2‡2

njÿ

i :yi œ÷b

j

(yi ≠ µj)2

R

db

where nj is the number of observations mapping to terminal
nodes ÷b

j
and

q
j nj = n.

Draw M|T , ‡2, y
• What about the terminal node scalar mean parameters?
• Suppose there are B terminal nodes in tree T , ÷b

1
, . . . , ÷b

b
. It is

important to note the following factorization of the likelihood:

L(‡2, T , M|y) Ã exp
A

≠ 1
2‡2

nÿ

i=1

(yi ≠ z(xi))2

B

= exp

Q

ca≠ 1
2‡2

Bÿ

j=1

njÿ

i :yi œ÷b

j

(yi ≠ µj)2

R

db

=
BŸ

j=1

exp

Q

ca≠ 1
2‡2

njÿ

i :yi œ÷b

j

(yi ≠ µj)2

R

db

where nj is the number of observations mapping to terminal
nodes ÷b

j
and

q
j nj = n.

B

Draw M|T , ‡2, y

• In other words, conditional on T , the scalar terminal node
parameters are independent!

• So, we can simply write down the full conditional for each µj

and draw them sequentially using Gibbs steps.

Draw M|T , ‡2, y

• In other words, conditional on T , the scalar terminal node
parameters are independent!

• So, we can simply write down the full conditional for each µj

and draw them sequentially using Gibbs steps.

Draw µj |T , ‡2, y

• Assuming mean-centered observations, our prior is

fi(µj |T) = N(0, ‡2

µ).

• Based on our results from awhile ago (slides 9), the full
conditional is

fi(µj |‡2, T , y) ≥ N
Q

a
A

nj

‡2
+ 1

‡2
µ

B≠1 3nj ȳj

‡2

4
,

A
nj

‡2
+ 1

‡2
µ

B≠1
R

b

where ȳj = 1

nj

q
i :yi œ÷b

j

yi .

Draw µj |T , ‡2, y

• Assuming mean-centered observations, our prior is

fi(µj |T) = N(0, ‡2

µ).

• Based on our results from awhile ago (slides 9), the full
conditional is

fi(µj |‡2, T , y) ≥ N
Q

a
A

nj

‡2
+ 1

‡2
µ

B≠1 3nj ȳj

‡2

4
,

A
nj

‡2
+ 1

‡2
µ

B≠1
R

b

where ȳj = 1

nj

q
i :yi œ÷b

j

yi .

Draw T |‡2, y

• Sampling the posterior distributions of trees is more
complicated.

• discrete, infinite-dimensional space
• need clever(?) Metropolis-Hastings proposals
• if q(T æ T Õ) changes the number of terminal nodes in the tree,

what happens to the terminal node parameters, M?

• Chipman et al.† propose four basic proposals for mixing over
tree-space: Birth, Death, Change and Swap.

• We’ll look at Birth and Death only for now.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

Draw T |‡2, y

• Sampling the posterior distributions of trees is more
complicated.

• discrete, infinite-dimensional space

• need clever(?) Metropolis-Hastings proposals
• if q(T æ T Õ) changes the number of terminal nodes in the tree,

what happens to the terminal node parameters, M?

• Chipman et al.† propose four basic proposals for mixing over
tree-space: Birth, Death, Change and Swap.

• We’ll look at Birth and Death only for now.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

Draw T |‡2, y

• Sampling the posterior distributions of trees is more
complicated.

• discrete, infinite-dimensional space
• need clever(?) Metropolis-Hastings proposals

• if q(T æ T Õ) changes the number of terminal nodes in the tree,
what happens to the terminal node parameters, M?

• Chipman et al.† propose four basic proposals for mixing over
tree-space: Birth, Death, Change and Swap.

• We’ll look at Birth and Death only for now.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

Draw T |‡2, y

• Sampling the posterior distributions of trees is more
complicated.

• discrete, infinite-dimensional space
• need clever(?) Metropolis-Hastings proposals
• if q(T æ T Õ) changes the number of terminal nodes in the tree,

what happens to the terminal node parameters, M?

• Chipman et al.† propose four basic proposals for mixing over
tree-space: Birth, Death, Change and Swap.

• We’ll look at Birth and Death only for now.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

Draw T |‡2, y

• Sampling the posterior distributions of trees is more
complicated.

• discrete, infinite-dimensional space
• need clever(?) Metropolis-Hastings proposals
• if q(T æ T Õ) changes the number of terminal nodes in the tree,

what happens to the terminal node parameters, M?

• Chipman et al.† propose four basic proposals for mixing over
tree-space: Birth, Death, Change and Swap.

• We’ll look at Birth and Death only for now.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

Draw T |‡2, y

• Sampling the posterior distributions of trees is more
complicated.

• discrete, infinite-dimensional space
• need clever(?) Metropolis-Hastings proposals
• if q(T æ T Õ) changes the number of terminal nodes in the tree,

what happens to the terminal node parameters, M?

• Chipman et al.† propose four basic proposals for mixing over
tree-space: Birth, Death, Change and Swap.

• We’ll look at Birth and Death only for now.

† H.A. Chipman, E.I. George and R.E. McCulloch: Bayesian CART Model Search,

Journal of the American Statistical Association, vol.93, pp.935–948 (1998).

Draw T |‡2, y

����

���� ����

����

����

����

����

����

����

����

����

����

����

������������

����������������

������

Figure 2: Tree Moves

Draw T |‡2, y

• A birth replaces an existing terminal node with a new decision
rule of the form “v < c” and introduces (births) two new
terminal nodes below the new decision rule.

• Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it’s decision rule and instead becomes a
terminal node with a new parameter µ.

• Note that if we transition from T æ T Õ via birth, then
BÕ = B + 1 where B = |M|.

• This means that when we birth, a previous terminal node
parameter µ disappears and two new parameters, say µ(l) and
µ(r) are born.

• And when we death, two previous terminal node parameters,
µ(l) and µ(r), dissappear and a new parameter µ is born.

Draw T |‡2, y

• A birth replaces an existing terminal node with a new decision
rule of the form “v < c” and introduces (births) two new
terminal nodes below the new decision rule.

• Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it’s decision rule and instead becomes a
terminal node with a new parameter µ.

• Note that if we transition from T æ T Õ via birth, then
BÕ = B + 1 where B = |M|.

• This means that when we birth, a previous terminal node
parameter µ disappears and two new parameters, say µ(l) and
µ(r) are born.

• And when we death, two previous terminal node parameters,
µ(l) and µ(r), dissappear and a new parameter µ is born.

Draw T |‡2, y

• A birth replaces an existing terminal node with a new decision
rule of the form “v < c” and introduces (births) two new
terminal nodes below the new decision rule.

• Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it’s decision rule and instead becomes a
terminal node with a new parameter µ.

• Note that if we transition from T æ T Õ via birth, then
BÕ = B + 1 where B = |M|.

• This means that when we birth, a previous terminal node
parameter µ disappears and two new parameters, say µ(l) and
µ(r) are born.

• And when we death, two previous terminal node parameters,
µ(l) and µ(r), dissappear and a new parameter µ is born.

Draw T |‡2, y

• A birth replaces an existing terminal node with a new decision
rule of the form “v < c” and introduces (births) two new
terminal nodes below the new decision rule.

• Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it’s decision rule and instead becomes a
terminal node with a new parameter µ.

• Note that if we transition from T æ T Õ via birth, then
BÕ = B + 1 where B = |M|.

• This means that when we birth, a previous terminal node
parameter µ disappears and two new parameters, say µ(l) and
µ(r) are born.

• And when we death, two previous terminal node parameters,
µ(l) and µ(r), dissappear and a new parameter µ is born.

Draw T |‡2, y

• A birth replaces an existing terminal node with a new decision
rule of the form “v < c” and introduces (births) two new
terminal nodes below the new decision rule.

• Conversely, a death selects an existing next-to-terminal node
and removes (deaths) its two children terminal nodes, and the
selected node loses it’s decision rule and instead becomes a
terminal node with a new parameter µ.

• Note that if we transition from T æ T Õ via birth, then
BÕ = B + 1 where B = |M|.

• This means that when we birth, a previous terminal node
parameter µ disappears and two new parameters, say µ(l) and
µ(r) are born.

• And when we death, two previous terminal node parameters,
µ(l) and µ(r), dissappear and a new parameter µ is born.

Draw T |‡2, y
• The dimension-changing nature of tree proposals (at least

birth-death proposals) would appear to introduce some
challenges.

• How to construct such dimension-changing proposals is
explored in the Reversible-Jump Markov Chain Monte Carlo
(RJMCMC) work of Green (1995)†.

• Fortunately, Green (1995) shows that when the
dimension-changing parameter can be marginalized out, one
can proceed with the usual MH algorithm but using the
marginalized likelihood.

• For our conjugate Normal prior on the µ’s, this marginal
likelihood is available.

† P.J. Green: Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination, Biometrika, vol.82, pp.711–732 (1995).

Draw T |‡2, y
• The dimension-changing nature of tree proposals (at least

birth-death proposals) would appear to introduce some
challenges.

• How to construct such dimension-changing proposals is
explored in the Reversible-Jump Markov Chain Monte Carlo
(RJMCMC) work of Green (1995)†.

• Fortunately, Green (1995) shows that when the
dimension-changing parameter can be marginalized out, one
can proceed with the usual MH algorithm but using the
marginalized likelihood.

• For our conjugate Normal prior on the µ’s, this marginal
likelihood is available.

† P.J. Green: Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination, Biometrika, vol.82, pp.711–732 (1995).

Draw T |‡2, y
• The dimension-changing nature of tree proposals (at least

birth-death proposals) would appear to introduce some
challenges.

• How to construct such dimension-changing proposals is
explored in the Reversible-Jump Markov Chain Monte Carlo
(RJMCMC) work of Green (1995)†.

• Fortunately, Green (1995) shows that when the
dimension-changing parameter can be marginalized out, one
can proceed with the usual MH algorithm but using the
marginalized likelihood.

• For our conjugate Normal prior on the µ’s, this marginal
likelihood is available.

† P.J. Green: Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination, Biometrika, vol.82, pp.711–732 (1995).

Draw T |‡2, y
• The dimension-changing nature of tree proposals (at least

birth-death proposals) would appear to introduce some
challenges.

• How to construct such dimension-changing proposals is
explored in the Reversible-Jump Markov Chain Monte Carlo
(RJMCMC) work of Green (1995)†.

• Fortunately, Green (1995) shows that when the
dimension-changing parameter can be marginalized out, one
can proceed with the usual MH algorithm but using the
marginalized likelihood.

• For our conjugate Normal prior on the µ’s, this marginal
likelihood is available.

† P.J. Green: Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination, Biometrika, vol.82, pp.711–732 (1995).

Marginal Likelihood

• Marginalizing the portion of the likelihood associated with
terminal node ÷b

j
, we have

L(÷b

j |‡2, y) =
⁄

µj

L(÷b

j |µj , ‡2, y)fi(µj)dµj

(I will leave this as an excercise).

Birth Proposal

• We randomly generate T Õ as follows:

1. Randomly select a terminal node b œ {1, . . . , B} with
probability 1

B
where B = |M|.

2. Introduce a new rule vb ≥ fiv (vb) and cutpoint cb ≥ fic(cb)
where fiv , fic are typically discrete Uniform on the available
variable, cutpoints.

3. Calculate

– = min
I

1,
fi(T Õ|‡2, y)q(T |T Õ)
fi(T |‡2, y)q(T Õ|T)

J

4. Generate u ≥ Uniform(0, 1). If u < – then accept T Õ

otherwise reject.

Birth Proposal

• We randomly generate T Õ as follows:

1. Randomly select a terminal node b œ {1, . . . , B} with
probability 1

B
where B = |M|.

2. Introduce a new rule vb ≥ fiv (vb) and cutpoint cb ≥ fic(cb)
where fiv , fic are typically discrete Uniform on the available
variable, cutpoints.

3. Calculate

– = min
I

1,
fi(T Õ|‡2, y)q(T |T Õ)
fi(T |‡2, y)q(T Õ|T)

J

4. Generate u ≥ Uniform(0, 1). If u < – then accept T Õ

otherwise reject.

Birth Proposal

• We randomly generate T Õ as follows:

1. Randomly select a terminal node b œ {1, . . . , B} with
probability 1

B
where B = |M|.

2. Introduce a new rule vb ≥ fiv (vb) and cutpoint cb ≥ fic(cb)
where fiv , fic are typically discrete Uniform on the available
variable, cutpoints.

3. Calculate

– = min
I

1,
fi(T Õ|‡2, y)q(T |T Õ)
fi(T |‡2, y)q(T Õ|T)

J

4. Generate u ≥ Uniform(0, 1). If u < – then accept T Õ

otherwise reject.

Birth Proposal

• We randomly generate T Õ as follows:

1. Randomly select a terminal node b œ {1, . . . , B} with
probability 1

B
where B = |M|.

2. Introduce a new rule vb ≥ fiv (vb) and cutpoint cb ≥ fic(cb)
where fiv , fic are typically discrete Uniform on the available
variable, cutpoints.

3. Calculate

– = min
I

1,
fi(T Õ|‡2, y)q(T |T Õ)
fi(T |‡2, y)q(T Õ|T)

J

4. Generate u ≥ Uniform(0, 1). If u < – then accept T Õ

otherwise reject.

Birth Proposal

• We randomly generate T Õ as follows:

1. Randomly select a terminal node b œ {1, . . . , B} with
probability 1

B
where B = |M|.

2. Introduce a new rule vb ≥ fiv (vb) and cutpoint cb ≥ fic(cb)
where fiv , fic are typically discrete Uniform on the available
variable, cutpoints.

3. Calculate

– = min
I

1,
fi(T Õ|‡2, y)q(T |T Õ)
fi(T |‡2, y)q(T Õ|T)

J

4. Generate u ≥ Uniform(0, 1). If u < – then accept T Õ

otherwise reject. .

Birth Proposal

• In Step 3, note that

fi(T Õ|‡2, y) = L(÷b

j(l)
|‡2, y)L(÷b

j(r)
|‡2, y)fi(÷b

j is internal)
◊fi(÷b

j(l)
is terminal)fi(÷b

j(r)
is terminal)

◊fiv (vb

j = vb)fic(cb

j = cb)

and

q(T |T Õ) = q(T Õ æ T) = fi(death proposal)
◊fi(kill ÷b

j(l)
, ÷b

j(r)
|death proposal)

= (1 ≠ fib)fi
d ,÷b

j

Birth Proposal

• Typically the probability of doing a birth proposal is fib = 1

2
.

• And fi
d ,÷b

j

is the probability of selecting node ÷b
j

to perform the
death.

• Usually this will be 1

DÕ where DÕ is the number of
next-to-terminal-nodes in tree T Õ.

• An exception is when we have the root node as our tree
(obviously we can’t perform a death). In this case fi

d,÷b

j

= 0.

Birth Proposal

• Typically the probability of doing a birth proposal is fib = 1

2
.

• And fi
d ,÷b

j

is the probability of selecting node ÷b
j

to perform the
death.

• Usually this will be 1

DÕ where DÕ is the number of
next-to-terminal-nodes in tree T Õ.

• An exception is when we have the root node as our tree
(obviously we can’t perform a death). In this case fi

d,÷b

j

= 0.

Birth Proposal

• Typically the probability of doing a birth proposal is fib = 1

2
.

• And fi
d ,÷b

j

is the probability of selecting node ÷b
j

to perform the
death.

• Usually this will be 1

DÕ where DÕ is the number of
next-to-terminal-nodes in tree T Õ.

• An exception is when we have the root node as our tree
(obviously we can’t perform a death). In this case fi

d,÷b

j

= 0.

Birth Proposal

• Typically the probability of doing a birth proposal is fib = 1

2
.

• And fi
d ,÷b

j

is the probability of selecting node ÷b
j

to perform the
death.

• Usually this will be 1

DÕ where DÕ is the number of
next-to-terminal-nodes in tree T Õ.

• An exception is when we have the root node as our tree
(obviously we can’t perform a death). In this case fi

d,÷b

j

= 0.

Birth Proposal
• Analogously, for Step 3 note that

fi(T |‡2, y) = L(÷b

j |‡2, y)fi(÷b

j is terminal)

and

q(T Õ|T) = q(T æ T Õ) = fi(birth proposal)
◊fi(birth at ÷b

j |birth proposal)
◊fiv (vb

j = vb)fic(cb

j = cb)
= fibfi

b,÷b

j

fiv (vb

j = vb)fic(cb

j = cb)

Birth Proposal

• Typically fi
b,÷b

j

= 1

B
where B is the number of terminal nodes

in tree T .

• An exception is when, for example, there is no variable or
cutpoint available to birth at ÷b

j
. In this case fi

b,÷b

j

= 0.

Birth Proposal

• Typically fi
b,÷b

j

= 1

B
where B is the number of terminal nodes

in tree T .

• An exception is when, for example, there is no variable or
cutpoint available to birth at ÷b

j
. In this case fi

b,÷b

j

= 0.

Death Proposals

• As you might imagine, it works similarly to Birth proposals.

• I will spare you the details.

Death Proposals

• As you might imagine, it works similarly to Birth proposals.
• I will spare you the details.

Algorithm
• Let’s recap our sampling algorithm.

1. †Draw T |‡2, y

• With probability fib do a birth proposal, otherwise a death
proposal.

2. Draw M|T , ‡2, y

• For j = 1, . . . , B, perform our Gibbs steps by drawing

µj |‡2, T , y ≥ N
A3 nj

‡2
+ 1

‡2
µ

4≠1 3nj ȳj

‡2

4
,

3 nj

‡2
+ 1

‡2
µ

4≠1
B

3. Draw ‡2|T , M, y

• Perform our Gibbs step by drawing

‡2|T , M, y ≥ ‰≠2

3
‹ + n,

‹· 2 + ns2

‹ + n

4

† We might return to discussing more complex proposals for T later on. . .

Algorithm
• Let’s recap our sampling algorithm.

1. †Draw T |‡2, y

• With probability fib do a birth proposal, otherwise a death
proposal.

2. Draw M|T , ‡2, y

• For j = 1, . . . , B, perform our Gibbs steps by drawing

µj |‡2, T , y ≥ N
A3 nj

‡2
+ 1

‡2
µ

4≠1 3nj ȳj

‡2

4
,

3 nj

‡2
+ 1

‡2
µ

4≠1
B

3. Draw ‡2|T , M, y

• Perform our Gibbs step by drawing

‡2|T , M, y ≥ ‰≠2

3
‹ + n,

‹· 2 + ns2

‹ + n

4

† We might return to discussing more complex proposals for T later on. . .

Algorithm
• Let’s recap our sampling algorithm.

1. †Draw T |‡2, y
• With probability fib do a birth proposal, otherwise a death

proposal.

2. Draw M|T , ‡2, y

• For j = 1, . . . , B, perform our Gibbs steps by drawing

µj |‡2, T , y ≥ N
A3 nj

‡2
+ 1

‡2
µ

4≠1 3nj ȳj

‡2

4
,

3 nj

‡2
+ 1

‡2
µ

4≠1
B

3. Draw ‡2|T , M, y

• Perform our Gibbs step by drawing

‡2|T , M, y ≥ ‰≠2

3
‹ + n,

‹· 2 + ns2

‹ + n

4

† We might return to discussing more complex proposals for T later on. . .

Algorithm
• Let’s recap our sampling algorithm.

1. †Draw T |‡2, y
• With probability fib do a birth proposal, otherwise a death

proposal.
2. Draw M|T , ‡2, y

• For j = 1, . . . , B, perform our Gibbs steps by drawing

µj |‡2, T , y ≥ N
A3 nj

‡2
+ 1

‡2
µ

4≠1 3nj ȳj

‡2

4
,

3 nj

‡2
+ 1

‡2
µ

4≠1
B

3. Draw ‡2|T , M, y

• Perform our Gibbs step by drawing

‡2|T , M, y ≥ ‰≠2

3
‹ + n,

‹· 2 + ns2

‹ + n

4

† We might return to discussing more complex proposals for T later on. . .

Algorithm
• Let’s recap our sampling algorithm.

1. †Draw T |‡2, y
• With probability fib do a birth proposal, otherwise a death

proposal.
2. Draw M|T , ‡2, y

• For j = 1, . . . , B, perform our Gibbs steps by drawing

µj |‡2, T , y ≥ N
A3 nj

‡2
+ 1

‡2
µ

4≠1 3nj ȳj

‡2

4
,

3 nj

‡2
+ 1

‡2
µ

4≠1
B

3. Draw ‡2|T , M, y

• Perform our Gibbs step by drawing

‡2|T , M, y ≥ ‰≠2

3
‹ + n,

‹· 2 + ns2

‹ + n

4

† We might return to discussing more complex proposals for T later on. . .

Algorithm
• Let’s recap our sampling algorithm.

1. †Draw T |‡2, y
• With probability fib do a birth proposal, otherwise a death

proposal.
2. Draw M|T , ‡2, y

• For j = 1, . . . , B, perform our Gibbs steps by drawing

µj |‡2, T , y ≥ N
A3 nj

‡2
+ 1

‡2
µ

4≠1 3nj ȳj

‡2

4
,

3 nj

‡2
+ 1

‡2
µ

4≠1
B

3. Draw ‡2|T , M, y

• Perform our Gibbs step by drawing

‡2|T , M, y ≥ ‰≠2

3
‹ + n,

‹· 2 + ns2

‹ + n

4

† We might return to discussing more complex proposals for T later on. . .

Algorithm
• Let’s recap our sampling algorithm.

1. †Draw T |‡2, y
• With probability fib do a birth proposal, otherwise a death

proposal.
2. Draw M|T , ‡2, y

• For j = 1, . . . , B, perform our Gibbs steps by drawing

µj |‡2, T , y ≥ N
A3 nj

‡2
+ 1

‡2
µ

4≠1 3nj ȳj

‡2

4
,

3 nj

‡2
+ 1

‡2
µ

4≠1
B

3. Draw ‡2|T , M, y
• Perform our Gibbs step by drawing

‡2|T , M, y ≥ ‰≠2

3
‹ + n,

‹· 2 + ns2

‹ + n

4

† We might return to discussing more complex proposals for T later on. . .

Calibrating the Tree Prior

• For the depth penalizing prior,

–(1 ≠ d)≠—

typical values are – = 0.95 and — = 3.

• The variables are selected with a discrete uniform prior.
• The cutpoints are selected with a discrete uniform prior.

• The number of cutpoints is hyperparameter we can choose.
Default is numcuts = 100. This works well in general,
sometimes we might like a more refined grid, say
numcuts = 1, 000.

Calibrating the Tree Prior

• For the depth penalizing prior,

–(1 ≠ d)≠—

typical values are – = 0.95 and — = 3.

• The variables are selected with a discrete uniform prior.

• The cutpoints are selected with a discrete uniform prior.

• The number of cutpoints is hyperparameter we can choose.
Default is numcuts = 100. This works well in general,
sometimes we might like a more refined grid, say
numcuts = 1, 000.

Calibrating the Tree Prior

• For the depth penalizing prior,

–(1 ≠ d)≠—

typical values are – = 0.95 and — = 3.

• The variables are selected with a discrete uniform prior.
• The cutpoints are selected with a discrete uniform prior.

• The number of cutpoints is hyperparameter we can choose.
Default is numcuts = 100. This works well in general,
sometimes we might like a more refined grid, say
numcuts = 1, 000.

Calibrating the Tree Prior

• For the depth penalizing prior,

–(1 ≠ d)≠—

typical values are – = 0.95 and — = 3.

• The variables are selected with a discrete uniform prior.
• The cutpoints are selected with a discrete uniform prior.

• The number of cutpoints is hyperparameter we can choose.
Default is numcuts = 100. This works well in general,
sometimes we might like a more refined grid, say
numcuts = 1, 000.

Calibrating the variance prior, fi(‡2|‹, · 2)

• ‹ is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with ‹ = 3 being the default.

• The scale parameter ·2 is selected in the following way.

• Provide an initial estimate of the standard deviation of your
data, ‡̂. Typically the sample standard deviation.

• Provide an upper quantile q, with q = 0.90 being the default.
• · 2 is selected so that, a priori, P(‡ < ‡̂) = q.

• The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

• The smaller ‹ the more concentrated on small ‡ the prior
becomes.

Calibrating the variance prior, fi(‡2|‹, · 2)

• ‹ is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with ‹ = 3 being the default.

• The scale parameter ·2 is selected in the following way.

• Provide an initial estimate of the standard deviation of your
data, ‡̂. Typically the sample standard deviation.

• Provide an upper quantile q, with q = 0.90 being the default.
• · 2 is selected so that, a priori, P(‡ < ‡̂) = q.

• The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

• The smaller ‹ the more concentrated on small ‡ the prior
becomes.

Calibrating the variance prior, fi(‡2|‹, · 2)

• ‹ is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with ‹ = 3 being the default.

• The scale parameter ·2 is selected in the following way.
• Provide an initial estimate of the standard deviation of your

data, ‡̂. Typically the sample standard deviation.

• Provide an upper quantile q, with q = 0.90 being the default.
• · 2 is selected so that, a priori, P(‡ < ‡̂) = q.

• The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

• The smaller ‹ the more concentrated on small ‡ the prior
becomes.

Calibrating the variance prior, fi(‡2|‹, · 2)

• ‹ is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with ‹ = 3 being the default.

• The scale parameter ·2 is selected in the following way.
• Provide an initial estimate of the standard deviation of your

data, ‡̂. Typically the sample standard deviation.
• Provide an upper quantile q, with q = 0.90 being the default.

• · 2 is selected so that, a priori, P(‡ < ‡̂) = q.

• The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

• The smaller ‹ the more concentrated on small ‡ the prior
becomes.

Calibrating the variance prior, fi(‡2|‹, · 2)

• ‹ is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with ‹ = 3 being the default.

• The scale parameter ·2 is selected in the following way.
• Provide an initial estimate of the standard deviation of your

data, ‡̂. Typically the sample standard deviation.
• Provide an upper quantile q, with q = 0.90 being the default.
• · 2 is selected so that, a priori, P(‡ < ‡̂) = q.

• The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

• The smaller ‹ the more concentrated on small ‡ the prior
becomes.

Calibrating the variance prior, fi(‡2|‹, · 2)

• ‹ is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with ‹ = 3 being the default.

• The scale parameter ·2 is selected in the following way.
• Provide an initial estimate of the standard deviation of your

data, ‡̂. Typically the sample standard deviation.
• Provide an upper quantile q, with q = 0.90 being the default.
• · 2 is selected so that, a priori, P(‡ < ‡̂) = q.

• The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

• The smaller ‹ the more concentrated on small ‡ the prior
becomes.

Calibrating the variance prior, fi(‡2|‹, · 2)

• ‹ is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with ‹ = 3 being the default.

• The scale parameter ·2 is selected in the following way.
• Provide an initial estimate of the standard deviation of your

data, ‡̂. Typically the sample standard deviation.
• Provide an upper quantile q, with q = 0.90 being the default.
• · 2 is selected so that, a priori, P(‡ < ‡̂) = q.

• The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

• The smaller ‹ the more concentrated on small ‡ the prior
becomes.

Calibrating the mean prior, fi(µj |T)

• Assume the data is already mean-centered and scaled to
[≠0.5, 0.5].

• Then the prior for µj ≥ N(µµ, ‡2
µ) is set to have mean µµ = 0

and the variance is chosen such that

k‡µ = 0.5.

• In other words, this sets the prior up such that k standard
deviations cover the range of the observed data.

• The greater is k, the more shrinkage a priori is applied to the
mean parameters. The default is k = 2.

Calibrating the mean prior, fi(µj |T)

• Assume the data is already mean-centered and scaled to
[≠0.5, 0.5].

• Then the prior for µj ≥ N(µµ, ‡2
µ) is set to have mean µµ = 0

and the variance is chosen such that

k‡µ = 0.5.

• In other words, this sets the prior up such that k standard
deviations cover the range of the observed data.

• The greater is k, the more shrinkage a priori is applied to the
mean parameters. The default is k = 2.

Calibrating the mean prior, fi(µj |T)

• Assume the data is already mean-centered and scaled to
[≠0.5, 0.5].

• Then the prior for µj ≥ N(µµ, ‡2
µ) is set to have mean µµ = 0

and the variance is chosen such that

k‡µ = 0.5.

• In other words, this sets the prior up such that k standard
deviations cover the range of the observed data.

• The greater is k, the more shrinkage a priori is applied to the
mean parameters. The default is k = 2.

Calibrating the mean prior, fi(µj |T)

• Assume the data is already mean-centered and scaled to
[≠0.5, 0.5].

• Then the prior for µj ≥ N(µµ, ‡2
µ) is set to have mean µµ = 0

and the variance is chosen such that

k‡µ = 0.5.

• In other words, this sets the prior up such that k standard
deviations cover the range of the observed data.

• The greater is k, the more shrinkage a priori is applied to the
mean parameters. The default is k = 2.

Example
source("dace.sim.r")

Generate response:

set.seed(88)

n=5; k=1; rhotrue=0.2; lambdatrue=1

design=as.matrix(runif(n))

l1=list(m1=outer(design[,1],design[,1],"-"))

l.dez=list(l1=l1)

R=rhogeodacecormat(l.dez,c(rhotrue))$R

L=t(chol(R))

u=rnorm(nrow(R))

z=L%*%u

Our observed data:

y=as.vector(z)

Example
library(BayesTree)

preds=matrix(seq(0,1,length=100),ncol=1)

Variance prior

shat=sd(y)

nu=3

q=0.90

Mean prior

k=2

Tree prior

alpha=0.95

beta=2

nc=100

MCMC settings

N=1000

burn=1000

Example
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,

k=k,power=beta,base=alpha,ntree=1,numcut=nc,

ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 1

Prior:

k: 2.000000

degrees of freedom in sigma prior: 3

quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000

use quantiles for rule cut points: 0

data:

number of training observations: 5

number of test observations: 100

number of explanatory variables: 1

##

##

Cutoff rules c in x<=c vs x>c

Number of cutoffs: (var: number of possible c):

(1: 100)

##

##

Running mcmc loop:

iteration: 100 (of 2000)

iteration: 200 (of 2000)

iteration: 300 (of 2000)

iteration: 400 (of 2000)

iteration: 500 (of 2000)

iteration: 600 (of 2000)

iteration: 700 (of 2000)

iteration: 800 (of 2000)

iteration: 900 (of 2000)

iteration: 1000 (of 2000)

iteration: 1100 (of 2000)

iteration: 1200 (of 2000)

iteration: 1300 (of 2000)

iteration: 1400 (of 2000)

iteration: 1500 (of 2000)

iteration: 1600 (of 2000)

iteration: 1700 (of 2000)

iteration: 1800 (of 2000)

iteration: 1900 (of 2000)

iteration: 2000 (of 2000)

time for loop: 0

##

Tree sizes, last iteration:

2 Variable Usage, last iteration (var:count):

(1: 1)

DONE BART 11-2-2014

str(fit)

List of 10

$ call : language bart(x.train = design, y.train = y, x.test = preds, sigest = shat, sigdf = nu, sigquant = q, k = k, power = beta, base = alpha, ntree = 1, ...

$ first.sigma : num [1:1000] 0.1808 0.0905 0.1575 0.1066 0.0819 ...

$ sigma : num [1:1000] 0.0854 0.0927 0.0809 0.0957 0.1004 ...

$ sigest : num 0.247

$ yhat.train : num [1:1000, 1:5] 3.24 3.22 3.24 3.25 3.22 ...

$ yhat.train.mean: num [1:5] 3.24 3.24 3.23 3.24 2.86

$ yhat.test : num [1:1000, 1:100] 3.24 3.22 3.24 3.25 3.22 ...

$ yhat.test.mean : num [1:100] 3.24 3.24 3.24 3.24 3.24 ...

$ varcount : int [1:1000] 1 1 1 1 1 1 1 1 1 1 ...

$ y : num [1:5] 3.32 3.21 3.26 3.33 2.74

- attr(*, "class")= chr "bart"

Example

plot(design,y,pch=20,col="red",cex=2,xlim=c(0,1),

ylim=c(2.3,3.7),xlab="x",

main="Predicted mean response +/- 2s.d.")

for(i in 1:nrow(fit$yhat.test))

lines(preds,fit$yhat.test[i,],col="grey",lwd=0.25)

mean=apply(fit$yhat.test,2,mean)

sd=apply(fit$yhat.test,2,sd)

lines(preds,mean-1.96*sd,lwd=0.75,col="black")

lines(preds,mean+1.96*sd,lwd=0.75,col="black")

lines(preds,mean,lwd=2,col="blue")

points(design,y,pch=20,col="red")

Example

0.0 0.2 0.4 0.6 0.8 1.0

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Predicted mean response +/− 2s.d.

x

y

Example

plot(design,y,pch=20,col="red",cex=2,xlim=c(0,1),ylim=c(2.3,3.7),

xlab="x",main="Predicted median, q.025 and q.975")

for(i in 1:nrow(fit$yhat.test))

lines(preds,fit$yhat.test[i,],col="grey",lwd=0.25)

med=apply(fit$yhat.test,2,quantile,0.5)

q.025=apply(fit$yhat.test,2,quantile,0.025)

q.975=apply(fit$yhat.test,2,quantile,0.975)

lines(preds,q.025,lwd=0.75,col="black")

lines(preds,q.975,lwd=0.75,col="black")

lines(preds,med,lwd=2,col="blue")

points(design,y,pch=20,col="red")

Example

0.0 0.2 0.4 0.6 0.8 1.0

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Predicted median, q.025 and q.975

x

y

Example
nu=1

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,

k=k,power=beta,base=alpha,ntree=1,numcut=nc,

ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 1

Prior:

k: 2.000000

degrees of freedom in sigma prior: 1

quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000

use quantiles for rule cut points: 0

data:

number of training observations: 5

number of test observations: 100

number of explanatory variables: 1

##

##

Cutoff rules c in x<=c vs x>c

Number of cutoffs: (var: number of possible c):

(1: 100)

##

##

Running mcmc loop:

iteration: 100 (of 2000)

iteration: 200 (of 2000)

iteration: 300 (of 2000)

iteration: 400 (of 2000)

iteration: 500 (of 2000)

iteration: 600 (of 2000)

iteration: 700 (of 2000)

iteration: 800 (of 2000)

iteration: 900 (of 2000)

iteration: 1000 (of 2000)

iteration: 1100 (of 2000)

iteration: 1200 (of 2000)

iteration: 1300 (of 2000)

iteration: 1400 (of 2000)

iteration: 1500 (of 2000)

iteration: 1600 (of 2000)

iteration: 1700 (of 2000)

iteration: 1800 (of 2000)

iteration: 1900 (of 2000)

iteration: 2000 (of 2000)

time for loop: 0

##

Tree sizes, last iteration:

2 Variable Usage, last iteration (var:count):

(1: 1)

DONE BART 11-2-2014

Example

0.0 0.2 0.4 0.6 0.8 1.0

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Predicted mean response +/− 2s.d.

x

y

Example

0.0 0.2 0.4 0.6 0.8 1.0

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Predicted median, q.025 and q.975

x

y

Example
nu=1

nc=1000

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,

k=k,power=beta,base=alpha,ntree=1,numcut=nc,

ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 1

Prior:

k: 2.000000

degrees of freedom in sigma prior: 1

quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000

use quantiles for rule cut points: 0

data:

number of training observations: 5

number of test observations: 100

number of explanatory variables: 1

##

##

Cutoff rules c in x<=c vs x>c

Number of cutoffs: (var: number of possible c):

(1: 1000)

##

##

Running mcmc loop:

iteration: 100 (of 2000)

iteration: 200 (of 2000)

iteration: 300 (of 2000)

iteration: 400 (of 2000)

iteration: 500 (of 2000)

iteration: 600 (of 2000)

iteration: 700 (of 2000)

iteration: 800 (of 2000)

iteration: 900 (of 2000)

iteration: 1000 (of 2000)

iteration: 1100 (of 2000)

iteration: 1200 (of 2000)

iteration: 1300 (of 2000)

iteration: 1400 (of 2000)

iteration: 1500 (of 2000)

iteration: 1600 (of 2000)

iteration: 1700 (of 2000)

iteration: 1800 (of 2000)

iteration: 1900 (of 2000)

iteration: 2000 (of 2000)

time for loop: 0

##

Tree sizes, last iteration:

2 Variable Usage, last iteration (var:count):

(1: 1)

DONE BART 11-2-2014

Example

0.0 0.2 0.4 0.6 0.8 1.0

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Predicted mean response +/− 2s.d.

x

y

Example

0.0 0.2 0.4 0.6 0.8 1.0

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Predicted median, q.025 and q.975

x

y

Example
nu=1

k=1

nc=100

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,

k=k,power=beta,base=alpha,ntree=1,numcut=nc,

ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 1

Prior:

k: 1.000000

degrees of freedom in sigma prior: 1

quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000

use quantiles for rule cut points: 0

data:

number of training observations: 5

number of test observations: 100

number of explanatory variables: 1

##

##

Cutoff rules c in x<=c vs x>c

Number of cutoffs: (var: number of possible c):

(1: 100)

##

##

Running mcmc loop:

iteration: 100 (of 2000)

iteration: 200 (of 2000)

iteration: 300 (of 2000)

iteration: 400 (of 2000)

iteration: 500 (of 2000)

iteration: 600 (of 2000)

iteration: 700 (of 2000)

iteration: 800 (of 2000)

iteration: 900 (of 2000)

iteration: 1000 (of 2000)

iteration: 1100 (of 2000)

iteration: 1200 (of 2000)

iteration: 1300 (of 2000)

iteration: 1400 (of 2000)

iteration: 1500 (of 2000)

iteration: 1600 (of 2000)

iteration: 1700 (of 2000)

iteration: 1800 (of 2000)

iteration: 1900 (of 2000)

iteration: 2000 (of 2000)

time for loop: 0

##

Tree sizes, last iteration:

2 Variable Usage, last iteration (var:count):

(1: 1)

DONE BART 11-2-2014

Example

0.0 0.2 0.4 0.6 0.8 1.0

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Predicted mean response +/− 2s.d.

x

y

Example

0.0 0.2 0.4 0.6 0.8 1.0

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

Predicted median, q.025 and q.975

x

y

