
Gaussian Process Regression and Emulation
STAT8810, Fall 2017

M.T. Pratola

September 22, 2017

Today

Experimental Design;
Sensitivity Analysis

Designing Your Experiment

• If you will run a simulator model, or otherwise collect data in a
prescribed manner (i.e. someone has not simply handed you the
data), then you should select the settings of the input variables,
xi , i = 1, . . . , n in a “sensible” manner.

• Usually this is defined by a criterion.

• For example, minimize the prediction error of your statistical
emulator.

• This is a large and complex subject, so we will limit ourselves
to designs which are more generally useful for predicting
“black-box” simulators.

Designing Your Experiment

• If you will run a simulator model, or otherwise collect data in a
prescribed manner (i.e. someone has not simply handed you the
data), then you should select the settings of the input variables,
xi , i = 1, . . . , n in a “sensible” manner.

• Usually this is defined by a criterion.

• For example, minimize the prediction error of your statistical
emulator.

• This is a large and complex subject, so we will limit ourselves
to designs which are more generally useful for predicting
“black-box” simulators.

Designing Your Experiment

• If you will run a simulator model, or otherwise collect data in a
prescribed manner (i.e. someone has not simply handed you the
data), then you should select the settings of the input variables,
xi , i = 1, . . . , n in a “sensible” manner.

• Usually this is defined by a criterion.
• For example, minimize the prediction error of your statistical

emulator.

• This is a large and complex subject, so we will limit ourselves
to designs which are more generally useful for predicting
“black-box” simulators.

Designing Your Experiment

• If you will run a simulator model, or otherwise collect data in a
prescribed manner (i.e. someone has not simply handed you the
data), then you should select the settings of the input variables,
xi , i = 1, . . . , n in a “sensible” manner.

• Usually this is defined by a criterion.
• For example, minimize the prediction error of your statistical

emulator.

• This is a large and complex subject, so we will limit ourselves
to designs which are more generally useful for predicting
“black-box” simulators.

Optimal Design
• Assume a statistical emulator model for f (x) - say

Z (x) ≥ GP(µ, ‡2R) with known mean µ, variance ‡2 and
correlation function parameters fl.

• In optimal design we optimize some criterion with respect to
the settings of xi , i = 1, . . . , n.

• The design is the collection of best settings at which to collect
our data,

Dú = (xú
1, . . . , x

ú
n) such that xú

i œ ‰ ™ Rp.

• The general form of the problem is

Dú = arg min
D

J (D)

where D is searched over all possible n-run designs. Typically
this optimization is done over a discretization of ‰ rather than
the continuous version.

Optimal Design
• Assume a statistical emulator model for f (x) - say

Z (x) ≥ GP(µ, ‡2R) with known mean µ, variance ‡2 and
correlation function parameters fl.

• In optimal design we optimize some criterion with respect to
the settings of xi , i = 1, . . . , n.

• The design is the collection of best settings at which to collect
our data,

Dú = (xú
1, . . . , x

ú
n) such that xú

i œ ‰ ™ Rp.

• The general form of the problem is

Dú = arg min
D

J (D)

where D is searched over all possible n-run designs. Typically
this optimization is done over a discretization of ‰ rather than
the continuous version.

Optimal Design
• Assume a statistical emulator model for f (x) - say

Z (x) ≥ GP(µ, ‡2R) with known mean µ, variance ‡2 and
correlation function parameters fl.

• In optimal design we optimize some criterion with respect to
the settings of xi , i = 1, . . . , n.

• The design is the collection of best settings at which to collect
our data,

Dú = (xú
1, . . . , x

ú
n) such that xú

i œ ‰ ™ Rp.

• The general form of the problem is

Dú = arg min
D

J (D)

where D is searched over all possible n-run designs. Typically
this optimization is done over a discretization of ‰ rather than
the continuous version.

Optimal Design
• Assume a statistical emulator model for f (x) - say

Z (x) ≥ GP(µ, ‡2R) with known mean µ, variance ‡2 and
correlation function parameters fl.

• In optimal design we optimize some criterion with respect to
the settings of xi , i = 1, . . . , n.

• The design is the collection of best settings at which to collect
our data,

Dú = (xú
1, . . . , x

ú
n) such that xú

i œ ‰ ™ Rp.

• The general form of the problem is

Dú = arg min
D

J (D)

where D is searched over all possible n-run designs. Typically
this optimization is done over a discretization of ‰ rather than
the continuous version.

Optimal Design

• Note that this is itself a non-trivial problem.

• If we discretize ‰ as an N-grid then we have
!N

n
"

possible
designs.

• Typically we will plug-in estimates of µ, ‡2, fl as taking into
account their uncertainty makes the computational cost much
worse.

• We are trying to optimize n ◊ p parameters in this problem - a
high-dimensional optimization problem.

Optimal Design

• Note that this is itself a non-trivial problem.
• If we discretize ‰ as an N-grid then we have

!N
n
"

possible
designs.

• Typically we will plug-in estimates of µ, ‡2, fl as taking into
account their uncertainty makes the computational cost much
worse.

• We are trying to optimize n ◊ p parameters in this problem - a
high-dimensional optimization problem.

Optimal Design

• Note that this is itself a non-trivial problem.
• If we discretize ‰ as an N-grid then we have

!N
n
"

possible
designs.

• Typically we will plug-in estimates of µ, ‡2, fl as taking into
account their uncertainty makes the computational cost much
worse.

• We are trying to optimize n ◊ p parameters in this problem - a
high-dimensional optimization problem.

Optimal Design

• Note that this is itself a non-trivial problem.
• If we discretize ‰ as an N-grid then we have

!N
n
"

possible
designs.

• Typically we will plug-in estimates of µ, ‡2, fl as taking into
account their uncertainty makes the computational cost much
worse.

• We are trying to optimize n ◊ p parameters in this problem - a
high-dimensional optimization problem.

Optimal Design
• For our purpose, we will most often be interested in

prediction/emulation so an appropriate design criterion is the
Integrated Mean Squared Error criterion†,

J (D) = 1
‡2

⁄

‰
E

51
Z (x) ≠ Ẑ (x)

22
6

dx

where in our usual assumed simple setup (µ = 0) we have
‚
Z (x) = r(x)T R≠1Z

or in the general setup
‚
Z (x) = fT — + r(x)T R≠1(Z ≠ F—).

† A convenient closed-form expression is available in Sacks, Welch, Mitchell and
Wynn: Design and Analysis of Computer Experiments, Statistical Science, vol.4,
pp.409–423 (1989).

µ
ZHI = EEHHK "

... Rn]
heFl

: H
N

D :{ xi*} it

Space-Filling Designs

• In order to simplify the criterion, so-called “space-filling”
designs were proposed.

• These involve a distance metric ”(xi , xj) with the properties

”(xi , xj) = ”(xj , xi)

”(xi , xj) Ø 0 with equality i� xi = xj

”(xi , xj) Æ ”(xi) + ”(xj).

Space-Filling Designs

• In order to simplify the criterion, so-called “space-filling”
designs were proposed.

• These involve a distance metric ”(xi , xj) with the properties

”(xi , xj) = ”(xj , xi)

”(xi , xj) Ø 0 with equality i� xi = xj

”(xi , xj) Æ ”(xi) + ”(xj).

Minimax Distance Designs

• Consider n-run designs D selected from a finite discretization
D of ‰.

• Dú is a minimax distance design if

min
D

max
xœD

”(x, D) = max
xœD

”(x, Dú) © ”ú

where ”(x, D) = minxÕœD ”(x, xÕ).
• Idea: cover the design space at n points with spheres of

minimum radius – ensures design points are never too far away
from points not in the design.

Minimax Distance Designs

• Consider n-run designs D selected from a finite discretization
D of ‰.

• Dú is a minimax distance design if

min
D

max
xœD

”(x, D) = max
xœD

”(x, Dú) © ”ú

where ”(x, D) = minxÕœD ”(x, xÕ).

• Idea: cover the design space at n points with spheres of
minimum radius – ensures design points are never too far away
from points not in the design.

Minimax Distance Designs

• Consider n-run designs D selected from a finite discretization
D of ‰.

• Dú is a minimax distance design if

min
D

max
xœD

”(x, D) = max
xœD

”(x, Dú) © ”ú

where ”(x, D) = minxÕœD ”(x, xÕ).
• Idea: cover the design space at n points with spheres of

minimum radius – ensures design points are never too far away
from points not in the design.

Maximin Distance Designs

• Dú is a maximin distance design if

max
D

min
x,xÕœD

”(x, xÕ) = min
x,xÕœDú

”(x, xÕ) © ”ú.

• Idea: cover the deisgn space at n points with spheres of
maximum radius – ensures no two design points are too close
to one another, so each one has a larger area of “coverage”.

• Generally preferred from a computational perspective since it
only involves distances amongst points in the design rather than
distances between design and non-design points as in minimax.

Maximin Distance Designs

• Dú is a maximin distance design if

max
D

min
x,xÕœD

”(x, xÕ) = min
x,xÕœDú

”(x, xÕ) © ”ú.

• Idea: cover the deisgn space at n points with spheres of
maximum radius – ensures no two design points are too close
to one another, so each one has a larger area of “coverage”.

• Generally preferred from a computational perspective since it
only involves distances amongst points in the design rather than
distances between design and non-design points as in minimax.

Maximin Distance Designs

• Dú is a maximin distance design if

max
D

min
x,xÕœD

”(x, xÕ) = min
x,xÕœDú

”(x, xÕ) © ”ú.

• Idea: cover the deisgn space at n points with spheres of
maximum radius – ensures no two design points are too close
to one another, so each one has a larger area of “coverage”.

• Generally preferred from a computational perspective since it
only involves distances amongst points in the design rather than
distances between design and non-design points as in minimax.

Minimax/Maximin Distance Designs

• Johnson et al.† relate these distance-based criteria with
model-based critera for GP models when the correlation goes
to zero - i.e. the response behaves like it is independent at
far-way input settings.

• The connection is interesting but beyond our scope.
• The idea is that in initial phases of data collection, our

relatively few input settings where we will collect data will be
remote from one another and this construction mimics this
behaviour and gives us a criterion to optimize in selecting such
input settings.

† Johnson, Moore and Ylvisaker: Minimax and Maximin Distance Designs, Journal of
Statistical Planning and Inference, vol. 26, pp. 131–148 (1990).

Minimax/Maximin Distance Designs

• Johnson et al.† relate these distance-based criteria with
model-based critera for GP models when the correlation goes
to zero - i.e. the response behaves like it is independent at
far-way input settings.

• The connection is interesting but beyond our scope.

• The idea is that in initial phases of data collection, our
relatively few input settings where we will collect data will be
remote from one another and this construction mimics this
behaviour and gives us a criterion to optimize in selecting such
input settings.

† Johnson, Moore and Ylvisaker: Minimax and Maximin Distance Designs, Journal of
Statistical Planning and Inference, vol. 26, pp. 131–148 (1990).

Minimax/Maximin Distance Designs

• Johnson et al.† relate these distance-based criteria with
model-based critera for GP models when the correlation goes
to zero - i.e. the response behaves like it is independent at
far-way input settings.

• The connection is interesting but beyond our scope.
• The idea is that in initial phases of data collection, our

relatively few input settings where we will collect data will be
remote from one another and this construction mimics this
behaviour and gives us a criterion to optimize in selecting such
input settings.

† Johnson, Moore and Ylvisaker: Minimax and Maximin Distance Designs, Journal of
Statistical Planning and Inference, vol. 26, pp. 131–148 (1990).

Example - Minimax Distance Design

library(fields)
cands=as.matrix(expand.grid(seq(0,1,length=10),seq(0,1,length=10)))
nd=9
design=cover.design(cands,nd,nruns=10)$design

Warning in cover.design(cands, nd, nruns = 10): Number of nearst neighbors
(nn) reduced to the actual number of candidates

plot(design,pch=20,xlab="x1",ylab="x2")
points(cands,col="grey")

Example - Minimax Distance Design

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

x1

x2

Grids
Why not just a grid of points?

design=as.matrix(expand.grid(seq(0,1,length=3),seq(0,1,length=3)))
plot(design,pch=20,xlab="x1",ylab="x2")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Grids

• Grids appear space-filling.

• But # of points grows exponentially with dimension:

p = 5, n = 5 ∆ 55 = 625 points!

• Lower-dimensional projections are also poor.
• So we would like space-fillingness and non-collapsingness.

Grids

• Grids appear space-filling.
• But # of points grows exponentially with dimension:

p = 5, n = 5 ∆ 55 = 625 points!

• Lower-dimensional projections are also poor.
• So we would like space-fillingness and non-collapsingness.

Grids

• Grids appear space-filling.
• But # of points grows exponentially with dimension:

p = 5, n = 5 ∆ 55 = 625 points!

• Lower-dimensional projections are also poor.

• So we would like space-fillingness and non-collapsingness.

Grids

• Grids appear space-filling.
• But # of points grows exponentially with dimension:

p = 5, n = 5 ∆ 55 = 625 points!

• Lower-dimensional projections are also poor.
• So we would like space-fillingness and non-collapsingness.

Latin Hypercube Designs (LHS)
• In a Latin Hypercube Design, the p input axes are stratified

into n partitions:

[0,
1
n

), . . . , [n ≠ 1
n

, 1]

• The n design points are selected as

x

j
i = (fij(i) ≠ 0.5)/n

for j = 1, . . . , p and i = 1, . . . , n where fij(i) are independent
random permutations of the integers 1, . . . , n.

• Idea is to place the integers 1, 2, . . . , n into cells defined by the
partitions so that each integer appears exactly once in each of
the strata for the p dimensions.

• So in 2D, LHS designs have the property that each
row/column of the design has only 1 design point.

Latin Hypercube Designs (LHS)
• In a Latin Hypercube Design, the p input axes are stratified

into n partitions:

[0,
1
n

), . . . , [n ≠ 1
n

, 1]

• The n design points are selected as

x

j
i = (fij(i) ≠ 0.5)/n

for j = 1, . . . , p and i = 1, . . . , n where fij(i) are independent
random permutations of the integers 1, . . . , n.

• Idea is to place the integers 1, 2, . . . , n into cells defined by the
partitions so that each integer appears exactly once in each of
the strata for the p dimensions.

• So in 2D, LHS designs have the property that each
row/column of the design has only 1 design point.

Latin Hypercube Designs (LHS)
• In a Latin Hypercube Design, the p input axes are stratified

into n partitions:

[0,
1
n

), . . . , [n ≠ 1
n

, 1]

• The n design points are selected as

x

j
i = (fij(i) ≠ 0.5)/n

for j = 1, . . . , p and i = 1, . . . , n where fij(i) are independent
random permutations of the integers 1, . . . , n.

• Idea is to place the integers 1, 2, . . . , n into cells defined by the
partitions so that each integer appears exactly once in each of
the strata for the p dimensions.

• So in 2D, LHS designs have the property that each
row/column of the design has only 1 design point.

Latin Hypercube Designs (LHS)
• In a Latin Hypercube Design, the p input axes are stratified

into n partitions:

[0,
1
n

), . . . , [n ≠ 1
n

, 1]

• The n design points are selected as

x

j
i = (fij(i) ≠ 0.5)/n

for j = 1, . . . , p and i = 1, . . . , n where fij(i) are independent
random permutations of the integers 1, . . . , n.

• Idea is to place the integers 1, 2, . . . , n into cells defined by the
partitions so that each integer appears exactly once in each of
the strata for the p dimensions.

• So in 2D, LHS designs have the property that each
row/column of the design has only 1 design point.

LHS Example

fi1(1) = 1 fi2(1) = 2
fi1(2) = 4 fi2(2) = 5
fi1(3) = 2 fi2(3) = 4
fi1(4) = 3 fi2(4) = 1
fi1(5) = 5 fi2(5) = 3

• Gives design settings for p = 1 as
X

1 =
1

1≠0.5
5 , 4≠0.5

5 , . . .
2

= (0.1, 0.7, 0.3, 0.5, 0.9) and for
p = 2 as X

2 = (0.3, 0.9, 0.7, 0.1, 0.5)

• Overall design given by X =
Ë
X

1T
, X

2T È

eIEI#t
tent

LHS Example

fi1(1) = 1 fi2(1) = 2
fi1(2) = 4 fi2(2) = 5
fi1(3) = 2 fi2(3) = 4
fi1(4) = 3 fi2(4) = 1
fi1(5) = 5 fi2(5) = 3

• Gives design settings for p = 1 as
X

1 =
1

1≠0.5
5 , 4≠0.5

5 , . . .
2

= (0.1, 0.7, 0.3, 0.5, 0.9) and for
p = 2 as X

2 = (0.3, 0.9, 0.7, 0.1, 0.5)
• Overall design given by X =

Ë
X

1T
, X

2T È

Latin Hypercube Designs
• McKay et al. (1979)† showed for a function of the form

Y = h(X1, . . . , Xk)

monotonic in each Xj and a monotonic transformation of Y

given by g(Y) then for estimators of the form

T (Y) =
nÿ

i=1
g(Yi),

the variance of the estimator using LHS is reduced compared
to simple random sampling and stratified sampling.

† McKay, Conover and Beckman: A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code, Technometrics,
vol.21, pp.239–245 (1979).

Latin Hypercube Designs
• Stein (1987)† showed that if a function f (x) satisfiess

f (x)2 < Œ and has the form

f (x) = f0 +
pÿ

j=1
fj(x) + e(x)

where f0 =
s

f (x)dx and fj(x) =
s

(f (x) ≠ µ)dx≠j then

VarLHS

A
1
n

nÿ

i=1
f (xi)

B

= 1
n

⁄
e(x)2 + o

31
n

4

<
1
n

⁄
e(x)2

dx + 1
n

pÿ

j=1

⁄
fj(x)2

dx

= Variid

† Stein: Large sample properties of simulations using Latin hypercube sampling,
Technometrics, vol.29, pp.143–151 (1987).

Latin Hypercube Designs

• On the other hand, it’s possible to get a bad LHS, such as the
points along the diagonal.

• So typically LHS is combined with another criterion that
enforces space-fillingness.

• e.g. among the LHS designs of size n, choose the LHS that is
best from a minimax distance perspective.

Latin Hypercube Designs

• On the other hand, it’s possible to get a bad LHS, such as the
points along the diagonal.

• So typically LHS is combined with another criterion that
enforces space-fillingness.

• e.g. among the LHS designs of size n, choose the LHS that is
best from a minimax distance perspective.

Latin Hypercube Designs

• On the other hand, it’s possible to get a bad LHS, such as the
points along the diagonal.

• So typically LHS is combined with another criterion that
enforces space-fillingness.

• e.g. among the LHS designs of size n, choose the LHS that is
best from a minimax distance perspective.

LHS Example

• R package lhs o�ers a few implementations.

library(lhs)
set.seed(66) # only to replicate this output
n=9
p=2
design1=randomLHS(n,p) # default algorithm
set.seed(66)
design2=optimumLHS(n,p) # maximize mean distance

between design points
set.seed(66)
design3=maximinLHS(n,p) # maximize the min distance

between design points

LHS Example

1
1

1

1

1

1

1

1

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

LHS Example

1
1

1

1

1

1

1

1

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

2

2

2

2

2

2

2

2

2

LHS Example

1
1

1

1

1

1

1

1

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

Sequential Designs

• Often we would like to perform a small initial design and then
based on the data observed sequentially collect more data to
refine our estimate of interest.

• For example, in uncertainty quantification the goal is often to
optimize a complicated response by use of our statistical GP
emulator.

• a natural sequential design setup in this case is to select points
that increasingly refine our estimate of the optimum.

• A popular approach is the expected improvement method of
Jones et al.†

† Jones, Schonlau and Welch: E�cient Global Optimization of Expensive Black Box
Functions, Journal of Global Optimization, vol. 13, pp.455–492 (1998).

Sequential Designs

• Often we would like to perform a small initial design and then
based on the data observed sequentially collect more data to
refine our estimate of interest.

• For example, in uncertainty quantification the goal is often to
optimize a complicated response by use of our statistical GP
emulator.

• a natural sequential design setup in this case is to select points
that increasingly refine our estimate of the optimum.

• A popular approach is the expected improvement method of
Jones et al.†

† Jones, Schonlau and Welch: E�cient Global Optimization of Expensive Black Box
Functions, Journal of Global Optimization, vol. 13, pp.455–492 (1998).

Sequential Designs

• Often we would like to perform a small initial design and then
based on the data observed sequentially collect more data to
refine our estimate of interest.

• For example, in uncertainty quantification the goal is often to
optimize a complicated response by use of our statistical GP
emulator.

• a natural sequential design setup in this case is to select points
that increasingly refine our estimate of the optimum.

• A popular approach is the expected improvement method of
Jones et al.†

† Jones, Schonlau and Welch: E�cient Global Optimization of Expensive Black Box
Functions, Journal of Global Optimization, vol. 13, pp.455–492 (1998).

Sequential Designs

• Often we would like to perform a small initial design and then
based on the data observed sequentially collect more data to
refine our estimate of interest.

• For example, in uncertainty quantification the goal is often to
optimize a complicated response by use of our statistical GP
emulator.

• a natural sequential design setup in this case is to select points
that increasingly refine our estimate of the optimum.

• A popular approach is the expected improvement method of
Jones et al.†

† Jones, Schonlau and Welch: E�cient Global Optimization of Expensive Black Box
Functions, Journal of Global Optimization, vol. 13, pp.455–492 (1998). •

Expected Improvement
• Start with an initial n-run single-shot experiment (say,

space-filling).

• Let fmin = min(y(x1), . . . , y(xn)) and define the improvement
function to be

I(x) = max(fmin ≠ Y (x), 0).

• Note that I(x) is a random variable, so one might try to look
at the expected improvement as the optimality criteria,

E [I(x)] = E [max(fmin ≠ Y (x), 0)]

= (fmin ≠ ŷ(x)�
3

fmin ≠ ŷ(x)
ŝ(x)

4
+ ŝ(x)„

3
fmin ≠ ŷ(x)

ŝ(x)

4

where � denotes the standard Normal c.d.f. and „ denotes the
standard Normal p.d.f.

Expected Improvement
• Start with an initial n-run single-shot experiment (say,

space-filling).
• Let fmin = min(y(x1), . . . , y(xn)) and define the improvement

function to be

I(x) = max(fmin ≠ Y (x), 0).

• Note that I(x) is a random variable, so one might try to look
at the expected improvement as the optimality criteria,

E [I(x)] = E [max(fmin ≠ Y (x), 0)]

= (fmin ≠ ŷ(x)�
3

fmin ≠ ŷ(x)
ŝ(x)

4
+ ŝ(x)„

3
fmin ≠ ŷ(x)

ŝ(x)

4

where � denotes the standard Normal c.d.f. and „ denotes the
standard Normal p.d.f.

Expected Improvement
• Start with an initial n-run single-shot experiment (say,

space-filling).
• Let fmin = min(y(x1), . . . , y(xn)) and define the improvement

function to be

I(x) = max(fmin ≠ Y (x), 0).

• Note that I(x) is a random variable, so one might try to look
at the expected improvement as the optimality criteria,

E [I(x)] = E [max(fmin ≠ Y (x), 0)]

= (fmin ≠ ŷ(x)�
3

fmin ≠ ŷ(x)
ŝ(x)

4
+ ŝ(x)„

3
fmin ≠ ŷ(x)

ŝ(x)

4

where � denotes the standard Normal c.d.f. and „ denotes the
standard Normal p.d.f.

)

Expected Improvement

• Want to sequentially select a new design point, xú that
maximizes the expected improvement. So what does EI do?

• It turns out:

ˆE [I(I(x))]
ˆŷ

= ≠�
3

fmin ≠ ŷ(x)
ŝ(x)

4
< 0

ˆE [I(I(x))]
ˆŝ

= „
3

fmin ≠ ŷ(x)
ŝ(x)

4
> 0

• So we can interpret this as meaning the expected improvement
increases as ŷ decreases and it also increases as ŝ increases.

• EI trades-o� between choosing a sequential design point that
further reduces the minimum value fmin or reduces the
uncertainty of the response surface.

Expected Improvement

• Want to sequentially select a new design point, xú that
maximizes the expected improvement. So what does EI do?

• It turns out:

ˆE [I(I(x))]
ˆŷ

= ≠�
3

fmin ≠ ŷ(x)
ŝ(x)

4
< 0

ˆE [I(I(x))]
ˆŝ

= „
3

fmin ≠ ŷ(x)
ŝ(x)

4
> 0

• So we can interpret this as meaning the expected improvement
increases as ŷ decreases and it also increases as ŝ increases.

• EI trades-o� between choosing a sequential design point that
further reduces the minimum value fmin or reduces the
uncertainty of the response surface.

q

&

Expected Improvement

• Want to sequentially select a new design point, xú that
maximizes the expected improvement. So what does EI do?

• It turns out:

ˆE [I(I(x))]
ˆŷ

= ≠�
3

fmin ≠ ŷ(x)
ŝ(x)

4
< 0

ˆE [I(I(x))]
ˆŝ

= „
3

fmin ≠ ŷ(x)
ŝ(x)

4
> 0

• So we can interpret this as meaning the expected improvement
increases as ŷ decreases and it also increases as ŝ increases.

• EI trades-o� between choosing a sequential design point that
further reduces the minimum value fmin or reduces the
uncertainty of the response surface.

%

B

Expected Improvement

• Want to sequentially select a new design point, xú that
maximizes the expected improvement. So what does EI do?

• It turns out:

ˆE [I(I(x))]
ˆŷ

= ≠�
3

fmin ≠ ŷ(x)
ŝ(x)

4
< 0

ˆE [I(I(x))]
ˆŝ

= „
3

fmin ≠ ŷ(x)
ŝ(x)

4
> 0

• So we can interpret this as meaning the expected improvement
increases as ŷ decreases and it also increases as ŝ increases.

• EI trades-o� between choosing a sequential design point that
further reduces the minimum value fmin or reduces the
uncertainty of the response surface.

Example: EI on Branin Test Function

We’ll look at applying EI to the Branin test function – see
https://www.sfu.ca/~ssurjano/branin.html

library(DiceOptim)
library(rgl)

get our initial starting design
#set.seed(7)
#design=optimumLHS(9,2)
design=as.matrix(expand.grid(seq(0,1,length=3),seq(0,1,length=3)))
colnames(design)=c("x1","x2")
y.branin=apply(design,1,branin)

Example: EI on Branin Test Function
Fit the GP model - built into the DiceOptim package
fit.gp=km(~1, design = data.frame(x = design),

response = y.branin,covtype = "gauss")

##
optimisation start

* estimation method : MLE
* optimisation method : BFGS
* analytical gradient : used
* trend model : ~1
* covariance model :
- type : gauss
- nugget : NO
- parameters lower bounds : 1e-10 1e-10
- parameters upper bounds : 2 2
- best initial criterion value(s) : -53.33026
##
N = 2, M = 5 machine precision = 2.22045e-16
At X0, 0 variables are exactly at the bounds
At iterate 0 f= 53.33 |proj g|= 0.78965
At iterate 1 f = 53.317 |proj g|= 0.32829
At iterate 2 f = 53.314 |proj g|= 0.12346
At iterate 3 f = 53.314 |proj g|= 0.069564
At iterate 4 f = 53.313 |proj g|= 0.032063
At iterate 5 f = 53.313 |proj g|= 0.0016393
At iterate 6 f = 53.313 |proj g|= 3.1107e-05
##
iterations 6
function evaluations 8
segments explored during Cauchy searches 7
BFGS updates skipped 0
active bounds at final generalized Cauchy point 0
norm of the final projected gradient 3.11072e-05
final function value 53.3132
##
F = 53.3132
final value 53.313245
converged

Plot surface
X=as.matrix(expand.grid(seq(0,1,length=10),

seq(0,1,length=10)))
colnames(X)=c("x1","x2")
yhat=predict(fit.gp, newdata = data.frame(x = X),

type = "UK")

Example: EI on Branin Test Function

persp3d(seq(0,1,length=10),seq(0,1,length=10),
matrix(yhat$mean,10,10),col="grey",
xlab="x1",ylab="x2",zlab="y")

persp3d(seq(0,1,length=10),seq(0,1,length=10),
matrix(yhat$lower95),col="blue",add=TRUE)

persp3d(seq(0,1,length=10),seq(0,1,length=10),
matrix(yhat$upper95),col="blue",add=TRUE)

plot3d(design[,1],design[,2],y.branin,type="s",
radius=7,col="red",add=TRUE)

Example: EI on Branin Test Function

Figure 1: Emulated Branin function with n=9 evaluations

Example: EI on Branin Test Function

Calculate EI
ego=apply(as.matrix(X),1,EI,fit.gp,type="UK",

minimization=TRUE)
persp3d(seq(0,1,length=10),seq(0,1,length=10),

matrix(ego,10,10),col="grey",
xlab="x1",ylab="x2",zlab="y")

Get next x that maximizes the EI
x.new=max_EI(fit.gp,lower=rep(0,2),upper=rep(1,2),

parinit = 0.5,minimization=TRUE)$par
yhat.xnew=predict(fit.gp,newdata=x.new,type="UK")$mean

Example: EI on Branin Test Function
Warning in genoud(EI, nvars = d, max = TRUE, pop.size = control$pop.size, :
Ignoring �starting.values� because length(staring.values)!=nvars

##
##
Mon Sep 25 13:23:43 2017
Domains:
0.000000e+00 <= X1 <= 1.000000e+00
0.000000e+00 <= X2 <= 1.000000e+00
##
Data Type: Floating Point
Operators (code number, name, population)
(1) Cloning........................... 2
(2) Uniform Mutation.................. 1
(3) Boundary Mutation................. 1
(4) Non-Uniform Mutation.............. 1
(5) Polytope Crossover................ 1
(6) Simple Crossover.................. 2
(7) Whole Non-Uniform Mutation........ 1
(8) Heuristic Crossover............... 2
(9) Local-Minimum Crossover........... 0
##
HARD Maximum Number of Generations: 12
Maximum Nonchanging Generations: 2
Population size : 12
Convergence Tolerance: 1.000000e-21
##
Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
Not Checking Gradients before Stopping.
Not Using Out of Bounds Individuals and Not Allowing Trespassing.
##
Maximization Problem.
##
##
Generation# Solution Value
##
0 2.396663e+01
2 3.542386e+01
3 4.884087e+01
##
�wait.generations� limit reached.
No significant improvement in 2 generations.
##
Solution Fitness Value: 4.884087e+01
##
Parameters at the Solution (parameter, gradient):
##
X[1] : 7.247317e-01 G[1] : -3.907285e-09
X[2] : 1.658638e-01 G[2] : -1.557653e-08
##
Solution Found Generation 3
Number of Generations Run 6
##
Mon Sep 25 13:23:43 2017
Total run time : 0 hours 0 minutes and 0 seconds

Figure 2: Expected Improvement Function for 10th Evaluation

Example: EI on Branin Test Function

Figure 3: Emulated Branin with New Evaluation Location in Green

Example: EI on Branin Test Function
Update by evaluating our expensive function
y.new=apply(x.new,1,branin)
y.branin=c(y.branin,y.new)
design=rbind(design,x.new)

Refit the GP model
fit.gp=km(~1, design = data.frame(x = design),

response = y.branin, covtype = "gauss")

##
optimisation start

* estimation method : MLE
* optimisation method : BFGS
* analytical gradient : used
* trend model : ~1
* covariance model :
- type : gauss
- nugget : NO
- parameters lower bounds : 1e-10 1e-10
- parameters upper bounds : 2 2
- best initial criterion value(s) : -59.42602
##
N = 2, M = 5 machine precision = 2.22045e-16
At X0, 0 variables are exactly at the bounds
At iterate 0 f= 59.426 |proj g|= 1.5483
At iterate 1 f = 58.889 |proj g|= 0.64746
At iterate 2 f = 58.685 |proj g|= 0.3194
At iterate 3 f = 58.589 |proj g|= 0.23197
At iterate 4 f = 58.588 |proj g|= 0.03938
At iterate 5 f = 58.588 |proj g|= 0.0032316
At iterate 6 f = 58.588 |proj g|= 0.0014888
At iterate 7 f = 58.588 |proj g|= 0.00012556
##
iterations 7
function evaluations 10
segments explored during Cauchy searches 8
BFGS updates skipped 0
active bounds at final generalized Cauchy point 0
norm of the final projected gradient 0.000125557
final function value 58.5881
##
F = 58.5881
final value 58.588108
converged

yhat=predict(fit.gp, newdata = data.frame(x = X),
type = "UK")

Example: EI on Branin Test Function

Figure 4: Emulated Branin Function with n=10 Evaluations

Example: EI on Branin Test Function

Figure 5: Emulated Branin Function with n=10 Evaluations with
Uncertainties

Example: EI on Branin Test Function
Calculate EI
ego=apply(as.matrix(X),1,EI,fit.gp,type="UK",

minimization=TRUE)
persp3d(seq(0,1,length=10),seq(0,1,length=10),

matrix(ego,10,10),col="grey",
xlab="x1",ylab="x2",zlab="y")

Get next x that maximizes the EI
x.new=max_EI(fit.gp,lower=rep(0,2),upper=rep(1,2),

parinit = 0.5,minimization=TRUE)$par

Warning in genoud(EI, nvars = d, max = TRUE, pop.size = control$pop.size, :
Ignoring �starting.values� because length(staring.values)!=nvars

##
##
Mon Sep 25 13:23:43 2017
Domains:
0.000000e+00 <= X1 <= 1.000000e+00
0.000000e+00 <= X2 <= 1.000000e+00
##
Data Type: Floating Point
Operators (code number, name, population)
(1) Cloning........................... 2
(2) Uniform Mutation.................. 1
(3) Boundary Mutation................. 1
(4) Non-Uniform Mutation.............. 1
(5) Polytope Crossover................ 1
(6) Simple Crossover.................. 2
(7) Whole Non-Uniform Mutation........ 1
(8) Heuristic Crossover............... 2
(9) Local-Minimum Crossover........... 0
##
HARD Maximum Number of Generations: 12
Maximum Nonchanging Generations: 2
Population size : 12
Convergence Tolerance: 1.000000e-21
##
Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
Not Checking Gradients before Stopping.
Not Using Out of Bounds Individuals and Not Allowing Trespassing.
##
Maximization Problem.
##
##
Generation# Solution Value
##
0 9.901620e+00
1 1.025114e+01
2 1.161621e+01
3 1.476287e+01
4 1.476287e+01
##
�wait.generations� limit reached.
No significant improvement in 2 generations.
##
Solution Fitness Value: 1.476287e+01
##
Parameters at the Solution (parameter, gradient):
##
X[1] : 5.158343e-01 G[1] : 5.676259e-09
X[2] : 2.191726e-01 G[2] : 9.098440e-09
##
Solution Found Generation 4
Number of Generations Run 7
##
Mon Sep 25 13:23:44 2017
Total run time : 0 hours 0 minutes and 1 seconds

yhat.xnew=predict(fit.gp,newdata=x.new,type="UK")$mean

Example: EI on Branin Test Function

Figure 6: Expected Improvement for 11th Evaluation

Example: EI on Branin Test Function
Update by evaluating our expensive function
y.new=apply(x.new,1,branin)
y.branin=c(y.branin,y.new)
design=rbind(design,x.new)

Refit the GP model
fit.gp=km(~1, design = data.frame(x = design),

response = y.branin,covtype = "gauss")

##
optimisation start

* estimation method : MLE
* optimisation method : BFGS
* analytical gradient : used
* trend model : ~1
* covariance model :
- type : gauss
- nugget : NO
- parameters lower bounds : 1e-10 1e-10
- parameters upper bounds : 2 2
- best initial criterion value(s) : -63.6092
##
N = 2, M = 5 machine precision = 2.22045e-16
At X0, 0 variables are exactly at the bounds
At iterate 0 f= 63.609 |proj g|= 1.7276
At iterate 1 f = 62.118 |proj g|= 1.0362
At iterate 2 f = 62.055 |proj g|= 0.8896
At iterate 3 f = 61.899 |proj g|= 0.34149
At iterate 4 f = 61.88 |proj g|= 0.35154
At iterate 5 f = 61.876 |proj g|= 0.034013
At iterate 6 f = 61.876 |proj g|= 0.0026973
At iterate 7 f = 61.876 |proj g|= 0.0042123
At iterate 8 f = 61.876 |proj g|= 0.00031177
##
iterations 8
function evaluations 14
segments explored during Cauchy searches 9
BFGS updates skipped 0
active bounds at final generalized Cauchy point 0
norm of the final projected gradient 0.000311772
final function value 61.8758
##
F = 61.8758
final value 61.875789
converged

yhat=predict(fit.gp, newdata = data.frame(x = X),
type = "UK")

Example: EI on Branin Test Function

Figure 7: Emulated Branin Function with n=11 Evaluations

Example: EI on Branin Test Function

Figure 8: Emulated Branin Function with n=11 Evaluations with
Uncertainties

Example: EI on Branin Test Function
Calculate EI
ego=apply(as.matrix(X),1,EI,fit.gp,type="UK",

minimization=TRUE)
persp3d(seq(0,1,length=10),seq(0,1,length=10),

matrix(ego,10,10),col="grey",
xlab="x1",ylab="x2",zlab="y")

Get next x that maximizes the EI
x.new=max_EI(fit.gp,lower=rep(0,2),upper=rep(1,2),

parinit = 0.5,minimization=TRUE)$par

Warning in genoud(EI, nvars = d, max = TRUE, pop.size = control$pop.size, :
Ignoring �starting.values� because length(staring.values)!=nvars

##
##
Mon Sep 25 13:23:44 2017
Domains:
0.000000e+00 <= X1 <= 1.000000e+00
0.000000e+00 <= X2 <= 1.000000e+00
##
Data Type: Floating Point
Operators (code number, name, population)
(1) Cloning........................... 2
(2) Uniform Mutation.................. 1
(3) Boundary Mutation................. 1
(4) Non-Uniform Mutation.............. 1
(5) Polytope Crossover................ 1
(6) Simple Crossover.................. 2
(7) Whole Non-Uniform Mutation........ 1
(8) Heuristic Crossover............... 2
(9) Local-Minimum Crossover........... 0
##
HARD Maximum Number of Generations: 12
Maximum Nonchanging Generations: 2
Population size : 12
Convergence Tolerance: 1.000000e-21
##
Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
Not Checking Gradients before Stopping.
Not Using Out of Bounds Individuals and Not Allowing Trespassing.
##
Maximization Problem.
##
##
Generation# Solution Value
##
0 1.081485e+01
2 1.159621e+01
3 1.166227e+01
4 1.166227e+01
5 1.166227e+01
6 1.166227e+01
7 1.166227e+01
8 1.166227e+01
9 1.166227e+01
##
�wait.generations� limit reached.
No significant improvement in 2 generations.
##
Solution Fitness Value: 1.166227e+01
##
Parameters at the Solution (parameter, gradient):
##
X[1] : 2.157177e-01 G[1] : 9.210375e-06
X[2] : 7.399183e-01 G[2] : -7.171395e-07
##
Solution Found Generation 9
Number of Generations Run 12
##
Mon Sep 25 13:23:44 2017
Total run time : 0 hours 0 minutes and 0 seconds

yhat.xnew=predict(fit.gp,newdata=x.new,type="UK")$mean

Example: EI on Branin Test Function

Figure 9: Expected Improvement for the 12th Evaluation

• And so on. . .
† Roustant, Ginsbourger and Deville: DiceKriging, DiceOptim: Two R Packages for
the Analysis of Computer Experiments by Kriging-Based Metamodeling and
Optimization, Journal of Statistical Software, vol.51, pp.1–55 (2012).

•

Global Sensitivity Analysis (SA)

• A variance-based decomposition of your (unknown) function f .

• Total variation of model output is decomposed into terms of
increasing dimensionality. Think “functional ANOVA”.

• Three main scenarios:

• Factor screening - identify the influential factors in a system
with many factors.

• Attribute output uncertainty to uncertainty in input factors.

• There is also a local SA where the emphasis is on local impact
of factors on the response. Think derivatives.

Global Sensitivity Analysis (SA)

• A variance-based decomposition of your (unknown) function f .
• Total variation of model output is decomposed into terms of

increasing dimensionality. Think “functional ANOVA”.

• Three main scenarios:

• Factor screening - identify the influential factors in a system
with many factors.

• Attribute output uncertainty to uncertainty in input factors.

• There is also a local SA where the emphasis is on local impact
of factors on the response. Think derivatives.

Global Sensitivity Analysis (SA)

• A variance-based decomposition of your (unknown) function f .
• Total variation of model output is decomposed into terms of

increasing dimensionality. Think “functional ANOVA”.
• Three main scenarios:

• Factor screening - identify the influential factors in a system
with many factors.

• Attribute output uncertainty to uncertainty in input factors.

• There is also a local SA where the emphasis is on local impact
of factors on the response. Think derivatives.

Global Sensitivity Analysis (SA)

• A variance-based decomposition of your (unknown) function f .
• Total variation of model output is decomposed into terms of

increasing dimensionality. Think “functional ANOVA”.
• Three main scenarios:

• Factor screening - identify the influential factors in a system
with many factors.

• Attribute output uncertainty to uncertainty in input factors.

• There is also a local SA where the emphasis is on local impact
of factors on the response. Think derivatives.

Global Sensitivity Analysis (SA)

• A variance-based decomposition of your (unknown) function f .
• Total variation of model output is decomposed into terms of

increasing dimensionality. Think “functional ANOVA”.
• Three main scenarios:

• Factor screening - identify the influential factors in a system
with many factors.

• Attribute output uncertainty to uncertainty in input factors.

• There is also a local SA where the emphasis is on local impact
of factors on the response. Think derivatives.

Global Sensitivity Analysis (SA)

• A variance-based decomposition of your (unknown) function f .
• Total variation of model output is decomposed into terms of

increasing dimensionality. Think “functional ANOVA”.
• Three main scenarios:

• Factor screening - identify the influential factors in a system
with many factors.

• Attribute output uncertainty to uncertainty in input factors.

• There is also a local SA where the emphasis is on local impact
of factors on the response. Think derivatives.

Sensitivity Analysis
• Assume the input space, ‰ œ Rk is a k-dimensional unit

hypercube.

• The Sobol’† decomposition of f (x), x œ ‰ is

f (x1, . . . , xk) = f0 +
kÿ

i=1
fi(xi) +

ÿ

1Æi<jÆk
fij(xi , xj) + . . . (1)

+ f1,2,...,k(x1, . . . , xk)

• For this decomposition to hold, f0 must be a constant and

⁄ 1

0
fi1,...,is (xi1 , . . . , xis)dxij = 0 for 1 Æ j Æ s. (2)

† Sobol’: On sensitivity estimation for nonlinear mathematical models,
Matematicheskoe Modelirovanie, 2.1, pp.112–118 (1990).

Sensitivity Analysis
• Assume the input space, ‰ œ Rk is a k-dimensional unit

hypercube.
• The Sobol’† decomposition of f (x), x œ ‰ is

f (x1, . . . , xk) = f0 +
kÿ

i=1
fi(xi) +

ÿ

1Æi<jÆk
fij(xi , xj) + . . . (1)

+ f1,2,...,k(x1, . . . , xk)

• For this decomposition to hold, f0 must be a constant and

⁄ 1

0
fi1,...,is (xi1 , . . . , xis)dxij = 0 for 1 Æ j Æ s. (2)

† Sobol’: On sensitivity estimation for nonlinear mathematical models,
Matematicheskoe Modelirovanie, 2.1, pp.112–118 (1990).

Sensitivity Analysis
• Assume the input space, ‰ œ Rk is a k-dimensional unit

hypercube.
• The Sobol’† decomposition of f (x), x œ ‰ is

f (x1, . . . , xk) = f0 +
kÿ

i=1
fi(xi) +

ÿ

1Æi<jÆk
fij(xi , xj) + . . . (1)

+ f1,2,...,k(x1, . . . , xk)

• For this decomposition to hold, f0 must be a constant and

⁄ 1

0
fi1,...,is (xi1 , . . . , xis)dxij = 0 for 1 Æ j Æ s. (2)

† Sobol’: On sensitivity estimation for nonlinear mathematical models,
Matematicheskoe Modelirovanie, 2.1, pp.112–118 (1990).

Sensitivity Analysis

• A consequence of the constraint (2) is that all summands in (1)
are orthogonal, e.g.,

⁄

‰
fi1,...,is fj1,...,jl dx = 0 if (i1, . . . , is) ”= (j1, . . . , jl).

• This is because at least one of the indices in (i1, . . . , is) and
(ji , . . . , jl) will not be repeated in both sets of indices, and so
the integral vanishes by (2).

Sensitivity Analysis

• A consequence of the constraint (2) is that all summands in (1)
are orthogonal, e.g.,

⁄

‰
fi1,...,is fj1,...,jl dx = 0 if (i1, . . . , is) ”= (j1, . . . , jl).

• This is because at least one of the indices in (i1, . . . , is) and
(ji , . . . , jl) will not be repeated in both sets of indices, and so
the integral vanishes by (2).

Sensitivity Analysis
• Another consequence is that

f0 =
⁄

‰
f (x)dx.

• Sobol’† showed the decomposition (1) is unique and all the
terms can be calculated as

fi(xi) = ≠f0 +
⁄ 1

0
· · ·

⁄ 1

0
f (x)dx≠i

fij(xi , xj) = ≠f0 ≠ fi(xi) ≠ fj(xj) +
⁄ 1

0
· · ·

⁄ 1

0
f (x)dx≠(i ,j)

and so on.

† Sobol: Sensitivity estimates for nonlinear mathematical models, Mathematical
Modelling and Computational Experiments, 1.4, pp.407–414 (1993).

Sensitivity Analysis
• Another consequence is that

f0 =
⁄

‰
f (x)dx.

• Sobol’† showed the decomposition (1) is unique and all the
terms can be calculated as

fi(xi) = ≠f0 +
⁄ 1

0
· · ·

⁄ 1

0
f (x)dx≠i

fij(xi , xj) = ≠f0 ≠ fi(xi) ≠ fj(xj) +
⁄ 1

0
· · ·

⁄ 1

0
f (x)dx≠(i ,j)

and so on.

† Sobol: Sensitivity estimates for nonlinear mathematical models, Mathematical
Modelling and Computational Experiments, 1.4, pp.407–414 (1993).

Sensitivity Analysis

• Sobol’ then defines the total variance of f (x) to be

D =
⁄

‰
f

2(x) ≠ f

2
0

= E

Ë
f (x)2

È
≠ E [f (x)]2

= Var(f (x))

where E [·] is taken with respect to a density fi(x). Usually this
is taken to be Uniform on ‰.

Sensitivity Analysis
• Similarly, the partial variances are

Di1,...,is =
⁄ 1

0
· · ·

⁄ 1

0
f

2
i1,...,is (xi1 , . . . , xis)dxi1 · · · dxis

where 1 Æ i1 < · · · < is Æ k and s = 1, . . . , k.

• For example,

D1 =
⁄ 1

0
f

2
1 (x1)dx1

= E

Ë
f

2
1 (x1)

È

= E

C3⁄
· · ·

⁄
f (x)dx≠1 ≠ f0

42
D

= VarX1 (E [f (x)|X1 = x1])

Sensitivity Analysis
• Similarly, the partial variances are

Di1,...,is =
⁄ 1

0
· · ·

⁄ 1

0
f

2
i1,...,is (xi1 , . . . , xis)dxi1 · · · dxis

where 1 Æ i1 < · · · < is Æ k and s = 1, . . . , k.

• For example,

D1 =
⁄ 1

0
f

2
1 (x1)dx1

= E

Ë
f

2
1 (x1)

È

= E

C3⁄
· · ·

⁄
f (x)dx≠1 ≠ f0

42
D

= VarX1 (E [f (x)|X1 = x1])

Sensitivity Analysis

• In all we have

D =
kÿ

i=1
Di +

ÿ

1Æi<jÆk
Dij + . . . + D1,2,...,k

and

Var(f) =
ÿ

i
VarXi (E [f (x)|Xi = xi])

+
ÿ

1Æi<jÆk
VarXi ,Xj (E [f (x)|Xi = xi , Xj = xj])

+ . . . + VarX1,...,Xk (E [f (bfx)|X1 = x1, . . . , Xk = xk])

where the last term is zero.

.

Sensitivity Analysis
• The sensitivity indices are given by

Si1,...,is = Di1,...,is
D

for 1 Æ i1 < · · · < is Æ k.

•
Si is called the first-order sensitivity index for factor Xi , which
measures the main e�ect of Xi on the output.

• i.e. the fractional contribution of Xi to the overall variance of
f (x).

•
Sij , i ”= j is the second-order sensitivity index which measures
the interaction e�ect.

• i.e. the part of the variation in f (x) due to Xi and Xj that
cannot be explained by the sum of the individual first-order
e�ects of Xi and Xj .

• etc.
• Note that qk

i=1 Si + q
1Æi<jÆk Sij + . . . + S1,2,...,k = 1.

Sensitivity Analysis
• The sensitivity indices are given by

Si1,...,is = Di1,...,is
D

for 1 Æ i1 < · · · < is Æ k.
•

Si is called the first-order sensitivity index for factor Xi , which
measures the main e�ect of Xi on the output.

• i.e. the fractional contribution of Xi to the overall variance of
f (x).

•
Sij , i ”= j is the second-order sensitivity index which measures
the interaction e�ect.

• i.e. the part of the variation in f (x) due to Xi and Xj that
cannot be explained by the sum of the individual first-order
e�ects of Xi and Xj .

• etc.
• Note that qk

i=1 Si + q
1Æi<jÆk Sij + . . . + S1,2,...,k = 1.

Sensitivity Analysis
• The sensitivity indices are given by

Si1,...,is = Di1,...,is
D

for 1 Æ i1 < · · · < is Æ k.
•

Si is called the first-order sensitivity index for factor Xi , which
measures the main e�ect of Xi on the output.

• i.e. the fractional contribution of Xi to the overall variance of
f (x).

•
Sij , i ”= j is the second-order sensitivity index which measures
the interaction e�ect.

• i.e. the part of the variation in f (x) due to Xi and Xj that
cannot be explained by the sum of the individual first-order
e�ects of Xi and Xj .

• etc.
• Note that qk

i=1 Si + q
1Æi<jÆk Sij + . . . + S1,2,...,k = 1.

Sensitivity Analysis
• The sensitivity indices are given by

Si1,...,is = Di1,...,is
D

for 1 Æ i1 < · · · < is Æ k.
•

Si is called the first-order sensitivity index for factor Xi , which
measures the main e�ect of Xi on the output.

• i.e. the fractional contribution of Xi to the overall variance of
f (x).

•
Sij , i ”= j is the second-order sensitivity index which measures
the interaction e�ect.

• i.e. the part of the variation in f (x) due to Xi and Xj that
cannot be explained by the sum of the individual first-order
e�ects of Xi and Xj .

• etc.
• Note that qk

i=1 Si + q
1Æi<jÆk Sij + . . . + S1,2,...,k = 1.

Sensitivity Analysis
• The sensitivity indices are given by

Si1,...,is = Di1,...,is
D

for 1 Æ i1 < · · · < is Æ k.
•

Si is called the first-order sensitivity index for factor Xi , which
measures the main e�ect of Xi on the output.

• i.e. the fractional contribution of Xi to the overall variance of
f (x).

•
Sij , i ”= j is the second-order sensitivity index which measures
the interaction e�ect.

• i.e. the part of the variation in f (x) due to Xi and Xj that
cannot be explained by the sum of the individual first-order
e�ects of Xi and Xj .

• etc.
• Note that qk

i=1 Si + q
1Æi<jÆk Sij + . . . + S1,2,...,k = 1.

Sensitivity Analysis
• The sensitivity indices are given by

Si1,...,is = Di1,...,is
D

for 1 Æ i1 < · · · < is Æ k.
•

Si is called the first-order sensitivity index for factor Xi , which
measures the main e�ect of Xi on the output.

• i.e. the fractional contribution of Xi to the overall variance of
f (x).

•
Sij , i ”= j is the second-order sensitivity index which measures
the interaction e�ect.

• i.e. the part of the variation in f (x) due to Xi and Xj that
cannot be explained by the sum of the individual first-order
e�ects of Xi and Xj .

• etc.

• Note that qk
i=1 Si + q

1Æi<jÆk Sij + . . . + S1,2,...,k = 1.

Sensitivity Analysis
• The sensitivity indices are given by

Si1,...,is = Di1,...,is
D

for 1 Æ i1 < · · · < is Æ k.
•

Si is called the first-order sensitivity index for factor Xi , which
measures the main e�ect of Xi on the output.

• i.e. the fractional contribution of Xi to the overall variance of
f (x).

•
Sij , i ”= j is the second-order sensitivity index which measures
the interaction e�ect.

• i.e. the part of the variation in f (x) due to Xi and Xj that
cannot be explained by the sum of the individual first-order
e�ects of Xi and Xj .

• etc.
• Note that qk

i=1 Si + q
1Æi<jÆk Sij + . . . + S1,2,...,k = 1.

Sensitivity Analysis
• The sum of all sensitivity indices involving factor Xi is called

the total sensitivity index for factor i , TSi .

• e.g. For a model with 3 factors X1, X2 and X3, then
TS1 = S1 + S12 + S13 + S123.

• Homma and Saltelli† show that by partitioning X into Xi and
X≠i , the total sensitivity index TSi can be computed as

TSi = Si + Si ,(≠i) = 1 ≠ S≠i

• e.g. TS1 = 1 ≠ S2 ≠ S3 ≠ S23 in the above example.

• This construction is computationally friendlier since it takes
only one Monte Carlo integration (more on this in a moment).

• Here S≠i is the sum of all Si1,...,is terms that do not involve the
index i .

† Homma and Saltelli: Importance measures in global sensitivity analysis of model
output, Reliability Engineering and Systems Safety, vol.52, pp.1–17 (1996).

Sensitivity Analysis
• The sum of all sensitivity indices involving factor Xi is called

the total sensitivity index for factor i , TSi .
• e.g. For a model with 3 factors X1, X2 and X3, then

TS1 = S1 + S12 + S13 + S123.

• Homma and Saltelli† show that by partitioning X into Xi and
X≠i , the total sensitivity index TSi can be computed as

TSi = Si + Si ,(≠i) = 1 ≠ S≠i

• e.g. TS1 = 1 ≠ S2 ≠ S3 ≠ S23 in the above example.

• This construction is computationally friendlier since it takes
only one Monte Carlo integration (more on this in a moment).

• Here S≠i is the sum of all Si1,...,is terms that do not involve the
index i .

† Homma and Saltelli: Importance measures in global sensitivity analysis of model
output, Reliability Engineering and Systems Safety, vol.52, pp.1–17 (1996).

Sensitivity Analysis
• The sum of all sensitivity indices involving factor Xi is called

the total sensitivity index for factor i , TSi .
• e.g. For a model with 3 factors X1, X2 and X3, then

TS1 = S1 + S12 + S13 + S123.

• Homma and Saltelli† show that by partitioning X into Xi and
X≠i , the total sensitivity index TSi can be computed as

TSi = Si + Si ,(≠i) = 1 ≠ S≠i

• e.g. TS1 = 1 ≠ S2 ≠ S3 ≠ S23 in the above example.
• This construction is computationally friendlier since it takes

only one Monte Carlo integration (more on this in a moment).
• Here S≠i is the sum of all Si1,...,is terms that do not involve the

index i .

† Homma and Saltelli: Importance measures in global sensitivity analysis of model
output, Reliability Engineering and Systems Safety, vol.52, pp.1–17 (1996).

Sensitivity Analysis
• The sum of all sensitivity indices involving factor Xi is called

the total sensitivity index for factor i , TSi .
• e.g. For a model with 3 factors X1, X2 and X3, then

TS1 = S1 + S12 + S13 + S123.

• Homma and Saltelli† show that by partitioning X into Xi and
X≠i , the total sensitivity index TSi can be computed as

TSi = Si + Si ,(≠i) = 1 ≠ S≠i

• e.g. TS1 = 1 ≠ S2 ≠ S3 ≠ S23 in the above example.

• This construction is computationally friendlier since it takes
only one Monte Carlo integration (more on this in a moment).

• Here S≠i is the sum of all Si1,...,is terms that do not involve the
index i .

† Homma and Saltelli: Importance measures in global sensitivity analysis of model
output, Reliability Engineering and Systems Safety, vol.52, pp.1–17 (1996).

Sensitivity Analysis
• The sum of all sensitivity indices involving factor Xi is called

the total sensitivity index for factor i , TSi .
• e.g. For a model with 3 factors X1, X2 and X3, then

TS1 = S1 + S12 + S13 + S123.

• Homma and Saltelli† show that by partitioning X into Xi and
X≠i , the total sensitivity index TSi can be computed as

TSi = Si + Si ,(≠i) = 1 ≠ S≠i

• e.g. TS1 = 1 ≠ S2 ≠ S3 ≠ S23 in the above example.
• This construction is computationally friendlier since it takes

only one Monte Carlo integration (more on this in a moment).

• Here S≠i is the sum of all Si1,...,is terms that do not involve the
index i .

† Homma and Saltelli: Importance measures in global sensitivity analysis of model
output, Reliability Engineering and Systems Safety, vol.52, pp.1–17 (1996).

Sensitivity Analysis
• The sum of all sensitivity indices involving factor Xi is called

the total sensitivity index for factor i , TSi .
• e.g. For a model with 3 factors X1, X2 and X3, then

TS1 = S1 + S12 + S13 + S123.

• Homma and Saltelli† show that by partitioning X into Xi and
X≠i , the total sensitivity index TSi can be computed as

TSi = Si + Si ,(≠i) = 1 ≠ S≠i

• e.g. TS1 = 1 ≠ S2 ≠ S3 ≠ S23 in the above example.
• This construction is computationally friendlier since it takes

only one Monte Carlo integration (more on this in a moment).
• Here S≠i is the sum of all Si1,...,is terms that do not involve the

index i .

† Homma and Saltelli: Importance measures in global sensitivity analysis of model
output, Reliability Engineering and Systems Safety, vol.52, pp.1–17 (1996).

Sensitivity Analysis

• In other words,

TSi = 1 ≠ D≠i
D

=
EX≠i [Var(f (x)|X≠i)]

Var(f (x))
D

where D≠i
D is the total fractional variance complement to factor

Xi .

• We think of TSi as the total contribution of factor Xi to the
total variation of f (x).

• If Si and TSi are similar, it means that factor Xi primarily
a�ects the variance of f through its main e�ect.

• If Si and TSi are di�erent, then the higher-order e�ects and
interactions involving Xi contribute to the variance of f .

Sensitivity Analysis

• In other words,

TSi = 1 ≠ D≠i
D

=
EX≠i [Var(f (x)|X≠i)]

Var(f (x))
D

where D≠i
D is the total fractional variance complement to factor

Xi .

• We think of TSi as the total contribution of factor Xi to the
total variation of f (x).

• If Si and TSi are similar, it means that factor Xi primarily
a�ects the variance of f through its main e�ect.

• If Si and TSi are di�erent, then the higher-order e�ects and
interactions involving Xi contribute to the variance of f .

Sensitivity Analysis

• In other words,

TSi = 1 ≠ D≠i
D

=
EX≠i [Var(f (x)|X≠i)]

Var(f (x))
D

where D≠i
D is the total fractional variance complement to factor

Xi .

• We think of TSi as the total contribution of factor Xi to the
total variation of f (x).

• If Si and TSi are similar, it means that factor Xi primarily
a�ects the variance of f through its main e�ect.

• If Si and TSi are di�erent, then the higher-order e�ects and
interactions involving Xi contribute to the variance of f .

Sensitivity Analysis

• In other words,

TSi = 1 ≠ D≠i
D

=
EX≠i [Var(f (x)|X≠i)]

Var(f (x))
D

where D≠i
D is the total fractional variance complement to factor

Xi .

• We think of TSi as the total contribution of factor Xi to the
total variation of f (x).

• If Si and TSi are similar, it means that factor Xi primarily
a�ects the variance of f through its main e�ect.

• If Si and TSi are di�erent, then the higher-order e�ects and
interactions involving Xi contribute to the variance of f .

Computing the Integrals

• Say we have some integral, h =
s

‰ g(x)dx that we wish to
compute.

• Approximate the integral using Monte Carlo integration (MC):

• Draw X as N i.i.d. Uniform(0,1) random variates
• Calculate ĥ = 1

n
qn

i=1 g(xi) where xi is the ith row of X.

• Then ĥ is a Monte Carlo estimate of
s

‰ g(x)dx

• Even better: sample X using LHS, for instance. This is called
Quasi Monte Carlo (QMC).

Computing the Integrals

• Say we have some integral, h =
s

‰ g(x)dx that we wish to
compute.

• Approximate the integral using Monte Carlo integration (MC):

• Draw X as N i.i.d. Uniform(0,1) random variates
• Calculate ĥ = 1

n
qn

i=1 g(xi) where xi is the ith row of X.

• Then ĥ is a Monte Carlo estimate of
s

‰ g(x)dx

• Even better: sample X using LHS, for instance. This is called
Quasi Monte Carlo (QMC).

Computing the Integrals

• Say we have some integral, h =
s

‰ g(x)dx that we wish to
compute.

• Approximate the integral using Monte Carlo integration (MC):
• Draw X as N i.i.d. Uniform(0,1) random variates

• Calculate ĥ = 1
n

qn
i=1 g(xi) where xi is the ith row of X.

• Then ĥ is a Monte Carlo estimate of
s

‰ g(x)dx

• Even better: sample X using LHS, for instance. This is called
Quasi Monte Carlo (QMC).

Computing the Integrals

• Say we have some integral, h =
s

‰ g(x)dx that we wish to
compute.

• Approximate the integral using Monte Carlo integration (MC):
• Draw X as N i.i.d. Uniform(0,1) random variates
• Calculate ĥ = 1

n
qn

i=1 g(xi) where xi is the ith row of X.

• Then ĥ is a Monte Carlo estimate of
s

‰ g(x)dx

• Even better: sample X using LHS, for instance. This is called
Quasi Monte Carlo (QMC).

N
N

Computing the Integrals

• Say we have some integral, h =
s

‰ g(x)dx that we wish to
compute.

• Approximate the integral using Monte Carlo integration (MC):
• Draw X as N i.i.d. Uniform(0,1) random variates
• Calculate ĥ = 1

n
qn

i=1 g(xi) where xi is the ith row of X.

• Then ĥ is a Monte Carlo estimate of
s

‰ g(x)dx

• Even better: sample X using LHS, for instance. This is called
Quasi Monte Carlo (QMC).

Computing the Integrals

• Say we have some integral, h =
s

‰ g(x)dx that we wish to
compute.

• Approximate the integral using Monte Carlo integration (MC):
• Draw X as N i.i.d. Uniform(0,1) random variates
• Calculate ĥ = 1

n
qn

i=1 g(xi) where xi is the ith row of X.

• Then ĥ is a Monte Carlo estimate of
s

‰ g(x)dx

• Even better: sample X using LHS, for instance. This is called
Quasi Monte Carlo (QMC).

Computing Sensitivities via Monte Carlo
• Draw random samples X(1) and X(2) both of size N.

• Compute:
‚
f0 = 1

N

Nÿ

m=1
f (xm)

‚
D = 1

N

Nÿ

m=1
f

2(xm) ≠ ‚
f

2
0

‚
Di = 1

N

Nÿ

m=1
f (x(1)

≠i ,m, x

(1)
i ,m)f (x(2)

≠i ,m, x

(1)
i ,m) ≠ ‚

f

2
0

and

‚
D≠i ≠ ‚

f

2
0 = 1

N

Nÿ

m=1
f (x(1)

≠i ,m, x

(1)
i ,m)f (x(1)

≠i ,m, x

(2)
i ,m)

where x≠i ,m = (. . . , xi≠1,m, xi+1,m, . . .) and superscripts
indicate using respective columns from two independent
sampling matrices, and x (no superscript) uses either sample.

Computing Sensitivities via Monte Carlo
• Draw random samples X(1) and X(2) both of size N.
• Compute:

‚
f0 = 1

N

Nÿ

m=1
f (xm)

‚
D = 1

N

Nÿ

m=1
f

2(xm) ≠ ‚
f

2
0

‚
Di = 1

N

Nÿ

m=1
f (x(1)

≠i ,m, x

(1)
i ,m)f (x(2)

≠i ,m, x

(1)
i ,m) ≠ ‚

f

2
0

and

‚
D≠i ≠ ‚

f

2
0 = 1

N

Nÿ

m=1
f (x(1)

≠i ,m, x

(1)
i ,m)f (x(1)

≠i ,m, x

(2)
i ,m)

where x≠i ,m = (. . . , xi≠1,m, xi+1,m, . . .) and superscripts
indicate using respective columns from two independent
sampling matrices, and x (no superscript) uses either sample.

Computing Sensitivities via Monte Carlo

• Our sensitivities are then estimated as

‚
Si =

‚
Di
‚
D

and „
TS i = 1 ≠

‚
D≠i

‚
D

Computing Sensitivities for UQ

• How big to make N? The bigger the better.

• sometimes you may see ‚
Si < 0 which is not possible, so this is

due to numerical error.

• In practice applying this algorithm to f (x) is infeasible, so the
idea is to replace it with our statistical emulator, ‚

f (x).

• this “plug-in” approach does not propagate uncertainties in ‚
f

through to ‚
Si , „

TS i . But there are ways of doing this -
e.g. Bayesian approach (later).

• So in UQ our sensitivities are subject to two sources of
uncertainty: the MC sample size N in approximating the
integrals, and the uncertainty of our emulator ‚

f since we
cannot freely evaluate our model f .

Computing Sensitivities for UQ

• How big to make N? The bigger the better.
• sometimes you may see ‚

Si < 0 which is not possible, so this is
due to numerical error.

• In practice applying this algorithm to f (x) is infeasible, so the
idea is to replace it with our statistical emulator, ‚

f (x).

• this “plug-in” approach does not propagate uncertainties in ‚
f

through to ‚
Si , „

TS i . But there are ways of doing this -
e.g. Bayesian approach (later).

• So in UQ our sensitivities are subject to two sources of
uncertainty: the MC sample size N in approximating the
integrals, and the uncertainty of our emulator ‚

f since we
cannot freely evaluate our model f .

Computing Sensitivities for UQ

• How big to make N? The bigger the better.
• sometimes you may see ‚

Si < 0 which is not possible, so this is
due to numerical error.

• In practice applying this algorithm to f (x) is infeasible, so the
idea is to replace it with our statistical emulator, ‚

f (x).

• this “plug-in” approach does not propagate uncertainties in ‚
f

through to ‚
Si , „

TS i . But there are ways of doing this -
e.g. Bayesian approach (later).

• So in UQ our sensitivities are subject to two sources of
uncertainty: the MC sample size N in approximating the
integrals, and the uncertainty of our emulator ‚

f since we
cannot freely evaluate our model f .

Computing Sensitivities for UQ

• How big to make N? The bigger the better.
• sometimes you may see ‚

Si < 0 which is not possible, so this is
due to numerical error.

• In practice applying this algorithm to f (x) is infeasible, so the
idea is to replace it with our statistical emulator, ‚

f (x).
• this “plug-in” approach does not propagate uncertainties in ‚

f

through to ‚
Si , „

TS i . But there are ways of doing this -
e.g. Bayesian approach (later).

• So in UQ our sensitivities are subject to two sources of
uncertainty: the MC sample size N in approximating the
integrals, and the uncertainty of our emulator ‚

f since we
cannot freely evaluate our model f .

Computing Sensitivities for UQ

• How big to make N? The bigger the better.
• sometimes you may see ‚

Si < 0 which is not possible, so this is
due to numerical error.

• In practice applying this algorithm to f (x) is infeasible, so the
idea is to replace it with our statistical emulator, ‚

f (x).
• this “plug-in” approach does not propagate uncertainties in ‚

f

through to ‚
Si , „

TS i . But there are ways of doing this -
e.g. Bayesian approach (later).

• So in UQ our sensitivities are subject to two sources of
uncertainty: the MC sample size N in approximating the
integrals, and the uncertainty of our emulator ‚

f since we
cannot freely evaluate our model f .

•

Sensitivity Analysis
• E�ectively, SA is based on the following decomposition of the

response variance:
Var(f) = VarXi (EX≠i)(f |Xi)) + EXi (VarX≠i(f |Xi))

where the first term is the main or first-order e�ect, and
Var(f) = VarX≠i(EXi (f |X≠i)) + EX≠i(VarXi (f |X≠i))

where the second term is the total-order e�ect of Xi .

• For additive models, these diagonal terms are equal.
• If the model is linear, VarXi (EX≠i (f |Xi))

Var(f) = —2
Xi

.

Saltelli and Homma: Sensitivity Analysis of model output: an investigation of new
techniques, Computational Statistics and Data Analysis, vol.15, pp.211–238 (1993).

Saltelli, Tarantola and Chan: A quantitative, model-independent method for global
sensitivity analysis of model output, Technometrics, vol.41, pp.39–56 (1999).

Saltelli, Chan and Scott: Sensitivity Analysis, John Wiley & Sons, New York, NY.
ISBN #0-471-99892-3 (2000).

Oakley and O’Hagan: Probabilistic sensitivity analysis of complex models: a Bayesian
approach, Journal of the Royal Statistical Society, Series B, vol.66, pp.751–769 (2004).

Sensitivity Analysis
• E�ectively, SA is based on the following decomposition of the

response variance:
Var(f) = VarXi (EX≠i)(f |Xi)) + EXi (VarX≠i(f |Xi))

where the first term is the main or first-order e�ect, and
Var(f) = VarX≠i(EXi (f |X≠i)) + EX≠i(VarXi (f |X≠i))

where the second term is the total-order e�ect of Xi .
• For additive models, these diagonal terms are equal.

• If the model is linear, VarXi (EX≠i (f |Xi))
Var(f) = —2

Xi
.

Saltelli and Homma: Sensitivity Analysis of model output: an investigation of new
techniques, Computational Statistics and Data Analysis, vol.15, pp.211–238 (1993).

Saltelli, Tarantola and Chan: A quantitative, model-independent method for global
sensitivity analysis of model output, Technometrics, vol.41, pp.39–56 (1999).

Saltelli, Chan and Scott: Sensitivity Analysis, John Wiley & Sons, New York, NY.
ISBN #0-471-99892-3 (2000).

Oakley and O’Hagan: Probabilistic sensitivity analysis of complex models: a Bayesian
approach, Journal of the Royal Statistical Society, Series B, vol.66, pp.751–769 (2004).

Sensitivity Analysis
• E�ectively, SA is based on the following decomposition of the

response variance:
Var(f) = VarXi (EX≠i)(f |Xi)) + EXi (VarX≠i(f |Xi))

where the first term is the main or first-order e�ect, and
Var(f) = VarX≠i(EXi (f |X≠i)) + EX≠i(VarXi (f |X≠i))

where the second term is the total-order e�ect of Xi .
• For additive models, these diagonal terms are equal.
• If the model is linear, VarXi (EX≠i (f |Xi))

Var(f) = —2
Xi

.

Saltelli and Homma: Sensitivity Analysis of model output: an investigation of new
techniques, Computational Statistics and Data Analysis, vol.15, pp.211–238 (1993).

Saltelli, Tarantola and Chan: A quantitative, model-independent method for global
sensitivity analysis of model output, Technometrics, vol.41, pp.39–56 (1999).

Saltelli, Chan and Scott: Sensitivity Analysis, John Wiley & Sons, New York, NY.
ISBN #0-471-99892-3 (2000).

Oakley and O’Hagan: Probabilistic sensitivity analysis of complex models: a Bayesian
approach, Journal of the Royal Statistical Society, Series B, vol.66, pp.751–769 (2004).

Example

• Consider the following function as our simulator which depends
on 5 inputs that are scaled to [0, 1]5 :

f (x) = 10sin(2fix1x2) + (x3 ≠ 0.5)2 + x4 + x5

•
x1, x2 a�ect the response in a non-linear way through the sin(·)
function

•
x3 is a quadratic e�ect

•
x4, x5 are linear e�ects

Example

• Consider the following function as our simulator which depends
on 5 inputs that are scaled to [0, 1]5 :

f (x) = 10sin(2fix1x2) + (x3 ≠ 0.5)2 + x4 + x5

•
x1, x2 a�ect the response in a non-linear way through the sin(·)
function

•
x3 is a quadratic e�ect

•
x4, x5 are linear e�ects

Example

• Consider the following function as our simulator which depends
on 5 inputs that are scaled to [0, 1]5 :

f (x) = 10sin(2fix1x2) + (x3 ≠ 0.5)2 + x4 + x5

•
x1, x2 a�ect the response in a non-linear way through the sin(·)
function

•
x3 is a quadratic e�ect

•
x4, x5 are linear e�ects

Example

• Consider the following function as our simulator which depends
on 5 inputs that are scaled to [0, 1]5 :

f (x) = 10sin(2fix1x2) + (x3 ≠ 0.5)2 + x4 + x5

•
x1, x2 a�ect the response in a non-linear way through the sin(·)
function

•
x3 is a quadratic e�ect

•
x4, x5 are linear e�ects

Example
• Because this function is known in closed-form and is rather

amenable to hand calculations, we can derive the marginal
1-way e�ects.

• For instance, recall that fi(xi) = ≠f0 +
s

x≠i
f (x)dx≠i

• We calculate the 1-way marginal e�ects as:

f1(x1) = ≠ 10
2fix1

cos(2fix1) + 10
2fix1

+ 13
12

f2(x2) = ≠ 10
2fix2

cos(2fix2) + 10
2fix2

+ 13
12

f3(x3) = 3.87964 + (x3 ≠ 0.5)2 + 1

f4(x4) = 3.87964 + 7
12 + x4

f5(x5) = 3.87964 + 7
12 + x5

Example
• Because this function is known in closed-form and is rather

amenable to hand calculations, we can derive the marginal
1-way e�ects.

• For instance, recall that fi(xi) = ≠f0 +
s

x≠i
f (x)dx≠i

• We calculate the 1-way marginal e�ects as:

f1(x1) = ≠ 10
2fix1

cos(2fix1) + 10
2fix1

+ 13
12

f2(x2) = ≠ 10
2fix2

cos(2fix2) + 10
2fix2

+ 13
12

f3(x3) = 3.87964 + (x3 ≠ 0.5)2 + 1

f4(x4) = 3.87964 + 7
12 + x4

f5(x5) = 3.87964 + 7
12 + x5

Example
• Because this function is known in closed-form and is rather

amenable to hand calculations, we can derive the marginal
1-way e�ects.

• For instance, recall that fi(xi) = ≠f0 +
s

x≠i
f (x)dx≠i

• We calculate the 1-way marginal e�ects as:

f1(x1) = ≠ 10
2fix1

cos(2fix1) + 10
2fix1

+ 13
12

f2(x2) = ≠ 10
2fix2

cos(2fix2) + 10
2fix2

+ 13
12

f3(x3) = 3.87964 + (x3 ≠ 0.5)2 + 1

f4(x4) = 3.87964 + 7
12 + x4

f5(x5) = 3.87964 + 7
12 + x5

Example

Generate data
set.seed(88) # just to replicate this example
n=500
X=matrix(runif(n*5),ncol=5)
f=10*sin(2*pi*X[,1]*X[,2])+(X[,3]-0.5)^2+X[,4]+X[,5]
y=f+rnorm(n,sd=1)

true 1-way marginal effects
f1=-10/(2*pi*X[,1])*cos(2*pi*X[,1])+10/(2*pi*X[,1])+13/12
f2=-10/(2*pi*X[,2])*cos(2*pi*X[,2])+10/(2*pi*X[,2])+13/12
f3=3.87964+(X[,3]-0.5)^2+1
f4=3.87964+7/12+X[,4]
f5=3.87964+7/12+X[,5]

Example
plot
par(mfrow=c(2,3))
plot(X[,1],y,xlab="X1",ylab="Y",pch=20,xlim=c(0,1))
ix=sort(X[,1],index.return=TRUE)$ix
lines(X[ix,1],f1[ix],lwd=4,col="blue")
plot(X[,2],y,xlab="X1",ylab="Y",pch=20,xlim=c(0,1))
ix=sort(X[,2],index.return=TRUE)$ix
lines(X[ix,2],f2[ix],lwd=4,col="blue")
plot(X[,3],y,xlab="X1",ylab="Y",pch=20,xlim=c(0,1))
ix=sort(X[,3],index.return=TRUE)$ix
lines(X[ix,3],f3[ix],lwd=4,col="blue")
plot(X[,4],y,xlab="X1",ylab="Y",pch=20,xlim=c(0,1))
ix=sort(X[,4],index.return=TRUE)$ix
lines(X[ix,4],f4[ix],lwd=4,col="blue")
plot(X[,5],y,xlab="X1",ylab="Y",pch=20,xlim=c(0,1))
ix=sort(X[,5],index.return=TRUE)$ix
lines(X[ix,5],f5[ix],lwd=4,col="blue")

Example

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

X1

Y

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

X1
Y

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

X1

Y
0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

X1

Y

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

X1

Y

Example

library(sensitivity)
N=10000
X1=data.frame(matrix(runif(N*5),ncol=5))
X2=data.frame(matrix(runif(N*5),ncol=5))
f.test <-function(X) {

10*sin(2*pi*X[,1]*X[,2])+(X[,3]-0.5)^2+X[,4]+X[,5]
}
si.S=sobolEff(model=f.test,X1=X1,X2=X2,order=1,nboot=0)
si.TS=sobolEff(model=f.test,X1=X1,X2=X2,order=0,nboot=0)

Example

First-order sensitivity indices.

si.S$S

original std. error min. c.i. max. c.i.
X1 0.212749 0.011655 0.189907 0.235591
X2 0.219223 0.011626 0.196437 0.242009
X3 -0.001839 0.009954 -0.021349 0.017671
X4 -0.001164 0.009944 -0.020654 0.018326
X5 0.001597 0.009931 -0.017867 0.021061

Example

Total sensitivity indices.

si.TS$S

original std. error min. c.i. max. c.i.
X1 0.776517 0.011585 0.753811 0.799223
X2 0.782737 0.011602 0.759997 0.805477
X3 0.000191 0.000004 0.000184 0.000198
X4 0.002856 0.000055 0.002749 0.002963
X5 0.002858 0.000054 0.002752 0.002964

