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So Far. . .

• Our approach to modeling our “expensive black-box functions”?
• treat them as a realization from a GP model.
• Estimate the covariance parameters from the data.
• Predict and quantify uncertainties using the BLUP.

• The BLUP uses plug-in estimates ρ̂. Does the uncertainty in ρ
matter?

• In more complicated models (e.g. treed models) we will have a
lot more parameters. Does the uncertainty in those parameters
matter?

• The Bayesian approach (loosely): treat all parameters as
random variables, change maximization problem into
integration problem.



Predictive Distribution
• Suppose ρ, σ2 are known. In this case, our BLUP was the

solution ŷ = cT y s.t. ŷ was unbiased and minimum variance.
• i.e. an optimization problem.

• Consider the following instead (which we have briefly seen
before):


y(x)
y(x1)

...
y(xn)

 ∼ N
((

0
0n

)
,

[
1 rT

r R

])

• In other words, we know that any finite collection of data must
have the appropriate Normal distribution under our GP
modeling framework.



Predictive Distribution

• But we observe y(x1), . . . , y(xn)! The only thing we don’t
know is y(x) for some x /∈ {x1, . . . , xn}.

• Conditioning on the quantities we know, the resulting
conditional Normal distribution is:

y(x)|y ∼ N
(
rT R−1y, σ2(1− rT R−1r)

)
.

• The mean of the conditional Normal is just our BLUP! And it’s
variance is just the variance of the BLUP!!

• This conditional distribution is called the predictive distribution.



Conditional Distributions

• In general, we can write a conditional distribution in many
equivalent ways by Bayes rule

π(A|B) = π(A,B)
π(B) = π(B|A)π(A)

π(B) = π(A|B)π(B)
π(B)

= π(A,B)∫
A π(A,B)dA = . . .

• The normalizing constant in the denominator is the marginal
distribution, π(B) =

∫
A π(A,B)dA =

∫
A π(B|A)π(A)dA =∫

A π(B|A)dπ(A).
• In general, arriving at closed-form solutions for these

distributions is not possible, but some cases are fortunately
tractable.



A Brief Aside on Bayes Rule

• Think inversion in the face of uncertainty, or probabilistic
inversion.

• That is, if we had the deterministic math problem y = g(θ)
one might solve for θ by

θ = g−1(y).

• With uncertainty, the Bayes rule is saying if we have
y = g(θ) + ε then one might “solve” for θ by

π(θ|y) = L(y |θ)π(θ)
π(y) .



Gaussian Distributions

• For Gaussian distributions, the results are well known. If(
ya
yb

)
∼ N

((
µa
µb

)
,

(
Σa Σab
Σba Σb

))

then the conditional distribution of ya|yb is

ya|yb ∼ N
(
µa + ΣabΣ−1b (yb − µb),Σa − ΣabΣ−1b Σba

)
and the marginal distribution is

ya ∼ N (µa,Σa)

and similarly for yb|ya and yb.



Gaussian Process Interpretation

• Our GP is, of course, nothing but a Normal distribution with a
particular covariance function,

z ∼ GP
(
0, c(x, x′;σ2,ρ)

)
with corresponding density function f .

• In the Bayesian perspective, this modelling assumption is
viewed as a prior distribution on the space of functions from
which our data arise.

• For example, we can specify that the function space is
continuous and differentiable using an Gaussian correlation
model, or continuous but nowhere differentiable using an
Exponential correlation model, etc.



Gaussian Process Interpretation

• Our observed data, in the emulation context, is observed
without error,

y(xi ) = z(xi ).

• As such, the likelihood function for our data is the same GP
density function,

L(; y) = f (y; 0, c(x, x′;σ2,ρ)).

• The predictive distribution for y(x) ≡ z(x) is simply the
conditional GP specified by the corresponding conditional
Normal distribution,

π(z(x)|y(x1), . . . , y(xn)) ∼ GP(m(x),C(x))



Example

source("dace.sim.r")
set.seed(88)
n=5
x1=runif(n)
l1=list(m1=abs(outer(x1,x1,"-")))
l.dez=list(l1=l1)
rho=c(0.0001)
s2=1
# sim.field defaults to Gaussian correlation
z=sim.field(l.dez,rho,s2)



Example

# Now we assume that the z's are observed error-free:
y=z

# Let's write down the predictive distribution
# over a fine grid
ng=100
xg=seq(0,1,length=ng)
X=c(x1,xg)
l1=list(m1=abs(outer(X,X,"-")))
l.dez=list(l1=l1)
Rall=rhogeodacecormat(l.dez,rho)$R



Example

# Extract the sub-matrices we need
Ryy=Rall[1:n,1:n]
Rgg=Rall[(n+1):(n+ng),(n+1):(n+ng)]
Rgy=Rall[(n+1):(n+ng),1:n]
Ryy.inv=chol2inv(chol(Ryy))

# Mean of conditional distribution:
m.cond=Rgy%*%Ryy.inv%*%y

# Covariance of conditional distribution:
E.cond=s2*(Rgg-Rgy%*%Ryy.inv%*%t(Rgy))



Example

# Now the predictive distn is N(m.cond,E.cond).
# Let's generate a realization!
L=t(chol(E.cond+diag(ng)*1e-5))
u=rnorm(ng)
z.cond=m.cond + L%*%u

# And make a plot
plot(x1,y,pch=20,col="red",cex=2,xlim=c(0,1),ylim=c(0,4))
lines(xg,m.cond,lwd=5,col="black")
lines(xg,m.cond-1.96*sqrt(diag(E.cond)),lwd=2,col="black")
lines(xg,m.cond+1.96*sqrt(diag(E.cond)),lwd=2,col="black")
lines(xg,z.cond,col="grey")



Example
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Example

# Generate some more realizations
plot(x1,y,pch=20,col="red",cex=2,xlim=c(0,1),ylim=c(0,4))
for(i in 1:100){

u=rnorm(ng)
z.cond=m.cond + L%*%u
lines(xg,z.cond,col="grey")

}
lines(xg,m.cond,lwd=5,col="black")
lines(xg,m.cond-1.96*sqrt(diag(E.cond)),lwd=2,col="black")
lines(xg,m.cond+1.96*sqrt(diag(E.cond)),lwd=2,col="black")



Example
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What about those parameters?

• We are going to treat those as random variables as well by
assigning the parameters prior distributions

• Much like our “function-space prior” for the z ’s, these
distributions are also called priors because they don’t depend
on the data.

• Once we observe our data, we will update our information
about these parameters using the conditional distribution.

• Except this conditional distribution is not called the predictive
distribution.

• It is usually called the posterior distribution.



The Posterior Distribution
• Let’s update our earlier model formulation, but now we will

explicitly include the parameters.
• The likelihood function for our data is

L(σ2,ρ; y) = f (y; 0, c(x, x′;σ2,ρ)) ≡ f (y|σ2,ρ).

• The prior distributions we will specify are π(σ2) and π(ρ).
• We want to know the updated distribution of the parameters

after we observe data. We apply Bayes rule:

π(σ2,ρ|y) = f (y|σ2,ρ)π(σ2)π(ρ)∫
σ2,ρ f (y|σ2,ρ)π(σ2)π(ρ)dσ2dρ

(1)

∝ f (y|σ2,ρ)π(σ2)π(ρ)



The Posterior Distribution

• Can we write down the conditional distribution π(σ2,ρ|y) like
we did for the predictive distribution earlier?

• Generally no. Closed-forms are only available in very simple
cases.

• Instead, we will have to approximate it numerically.

• And what about the predictions? Previously we wrote

π(z(x)|y),C(x))

but what we actually had was

π(z(x)|y, σ2,ρ) ∼ GP(m(x),C(x))

• What do we do about the σ2,ρ in this predictive distribution?



The Posterior Predictive Distribution

• If we (somehow) knew (1), then we can marginalize our usual
predictive distribution with respect to the posterior,

π(z(x)|y) =
∫
σ2,ρ

π(z(x)|y, σ2ρ)π(σ2,ρ|y)dσ2dρ. (2)

• In this way we incorporate the uncertainty in the parameters
σ2,ρ by marginalizing over the posterior distribution.

• e.g. this distribution will be more disperse than if we just
plugged-in point estimates for σ2,ρ into the usual predictive
distribution.

• The resulting distribution (2) is known as the posterior
predictive distribution.



The Bayesian Conundrum

• So everything depends on somehow getting a handle on the
posterior distribution.

• Generally, not easy. In fact, until the 90’s, Bayesian methods
often avoided because of this problem.

• Three breakthroughs changed things:
• The Gibbs sampler.
• The Metropolis-Hastings algorithm.
• Cheap powerful computers.

• But first, lets look at really simple models we can solve in
closed-form.



The Simplest Model Ever

• Consider n noisy independent measurements of a scalar
quantity with unknown mean µ and measurement error
ei ∼ N(0, σ2) where σ2 is a known constant.

• The model for the data is

yi = µ+ εi , i = 1, . . . , n

• The joint density of the data is

f (y|µ) =
n∏

i=1
f (yi |µ) =

n∏
i=1

1√
2πσ

exp
(
−(yi − µ)2

2σ2

)



The Simplest Model Ever

• Since we have 1 parameter (µ), we will place a prior on it.
Suppose the prior distribution is µ ∼ N(µ0, τ20 )

• here, µ0 and τ 20 are called hyperparameters. We will not place
priors on these but treat them as known constants that the
modeler specifies.

• We want to derive the posterior distribution,

π(µ|y).



The Simplest Model Ever

1. Rewrite the model likelihood as

L(µ|y) ≡ f (y|µ)

=
n∏

i=1

1√
2πσ

exp
(
−(yi − µ)2

2σ2

)

= 1
(2πσ2)n/2 exp

(
− 1
2σ2

n∑
i=1

(yi − µ)2
)

= 1√
2πσ

exp
(
−n(ȳ − µ)2

2σ2

)
exp

(
−(
∑

y2
i − nȳ2)
2σ2

)



The Simplest Model Ever
2. Write down the posterior up to proportionality as

π(µ|y) ∝ L(µ|y)π(µ)

∝ exp
(
− 1
2σ2/n (ȳ − µ)2

)
exp

(
− 1
2τ20

(µ− µ0)2
)

3. Rearrange to factor into a term involving µ and everything else

π(µ|y) ∝ exp
(
−1
2

[
(µ− µ1)2

τ21
+ (ȳ − µ0)2

σ2/n + τ20

])

where
(τ21 )−1 = n(σ2)−1 + (τ20 )−1

and
µ1 = τ21 (n(σ2)−1ȳ + (τ20 )−1µ0)



The Simplest Model Ever

4. Recognize the term involving only µ as the kernel of the
posterior distribution of interest

π(µ|y) ∝ exp
(
−1
2

[
µ− µ1)2

τ21
+ (ȳ − µ0)2

σ2/n + τ20

])

∝ exp
(
−(µ− µ1)2

2τ21

)
⇒ µ|y ∼ N(µ1, τ21 )



The Simplest Model Ever
• One could work out everything explicitly as a tedious exercise

that doesn’t matter.
• For Gaussians, the trick is in completing the square.
• Interpretation for this model?

• precision (reciprocal of variance) of posterior is additive.
• posterior mean can be written as a weighted combination of the

sample mean and prior mean,

µ1 = τ21

(
nȳ
σ2

+ µ0
τ20

)

= σ2τ20
nτ20 + σ2

(
nȳ
σ2

+ µ0
τ20

)

= ȳ
(

nτ20
nτ20 + σ2

)
+ µ0

(
σ2

nτ20 + σ2

)
= ȳα + µ0(1− α), α ∈ (0, 1)



The Simplest Model Ever

• This provides a nice interpretation, namely that if the prior
variance is large (or prior precision is small), little weight is
given to the prior mean and more weight is given to the sample
mean.

• While a large prior variance (small prior precision) has little
effect on the posterior variance (or precision).

• And vice-versa.
• Gives us some ideas of how we might logically specify the prior

hyperparameters µ0, τ20 .



Conjugate Distributions

• A family of distributions P is conjugate to an observational
model F if for every prior p ∈ P and for any observational
distribution f ∈ F the posterior distribution π ∈ P.

• For example, in our simple model we had a (scalar) Normal
likelihood and a Normal prior on µ leading to a Normal
posterior for µ.

• Advantages of conjugacy is the posterior is always available in
closed form.

• Disadvantage may be the restriction to a conjugate form
limiting flexibility in the type of prior we can specify.

• Some popular conjugacies for continuous distributions are
linked next to this slide set.



Conjugate Distributions

• What about our simple problem – what if σ2 is also unknown?
• What about GP regression? Then we need a higher

dimensional prior involving σ2 and ρ that is also conjugate to
the likelihood?

• Generally conjugacy becomes harder to take advantage of as
the dimensionality of model parameters increases.

• However, it turns out that having conjugacy with subsets of
parameters is still very useful.



Conditional Conjugacy

• Let us refer to model parameters more generally as
θj , j = 1, . . . , d .

• A general form of conditionining is

π(θi |θj , j ∈ C) = π(θi , θj , j ∈ C)
π(θj , j ∈ C)

for all ∀C ⊂ {1, . . . , i − 1, i + 1, . . . , d}.
• The most important of these is the full conditional,

π(θi |θ−i ).



Conditional Conjugacy

• In the case of a parameter vector θ = (θ1, . . . , θd )T , a (possibly
vector) component θi , i = 1, . . . , d exhibits conditional
conjugacy if the prior π(θi |θ−i ) (often simply π(θi |θ−i ) ≡ π(θi )
by assuming prior independence) and the full conditional
π(θi |θ−i , y) belong to the same family of distributions.



The Simplest Model, Revisited
• To make things easier, I will reparameterize our model in terms

of the precision, λ = (σ2)−1.
• Then, our likelihood was

L(µ, λ|y) =
n∏

i=1

√
λ√
2π

exp
(
−λ2 (yi − µ)2

)
• Our prior on µ was

µ ∼ N(µ0, λ−10 )

• We will consider λ to also be random now. Let’s say our prior is

λ ∼ Gamma(α, β)

• Our posterior from earlier now becomes the full-conditional for
µ:

µ|y, λ ∼ N(µ1, λ−11 )
where µ1 = λ−11 (nλȳ + λ0µ0) and λ1 = nλ+ λ0.



The Simplest Model, Revisited
• Next, we need the full conditional for λ.

5. The form of the prior is

π(λ) ∝ λα−1exp (−λβ)

6. Write down the full conditional up to proportionality

π(λ|µ, y) ∝ λn/2exp
(
−λ2

n∑
i=1

(yi − µ)2
)
λα−1exp (−λβ)

7. Rearrange into a factor involve λ and everything else

π(λ|µ, y) ∝ λα+n/2−1exp
(
−λ

[
1
2

n∑
i=1

(yi − µ)2 + β

])



The Simplest Model, Revisited

8. Recognize the term involving only λ as the kernel of the
posterior distribution of interest

π(λ|µ, y) ∝ λα+n/2−1exp
(
−λ

[
1
2

n∑
i=1

(yi − µ)2 + β

])
⇒ λ|µ, y ∼ Gamma(αn, βn)

where αn = α + n
2 and βn = β + 1

2
∑n

i=1(yi − µ)2.



The Gibbs Sampler†

• So we have π(µ|λ, y) and π(λ|µ, y) in closed form. Is this the
same as the posterior π(µ, λ|y)?

• No. But it turns out we can use our full conditionals to get
approximate samples from the true posterior by using an
algorithm called the Gibbs Sampler†.

† Geman and Geman: Stochastic Relaxation, Gibbs Distributions and the Bayesian
Restoration of Images, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.6, pp.721–741 (1984).

Gelfand and Smith: Sampling-based approaches to calculating marginal densities,
Journal of the American Statistical Association, vol.85, pp.398–409 (1990).



The Gibbs Sampler
• Allows us to simulate draws from the joint posterior
π(θ1, . . . , θd |y) when its only possible to directly simulate from
full conditional distributions, π(θi |θ−i , y).

1. Initialize counter j = 1 and θ(0) = (θ(0)
1 , . . . , θ

(0)
d )

2. Successively obtain new values θ(j) = (θ(j)
1 , . . . , θ

(j)
d ) via the

full conditionals as:

θ
(j)
1 ∼ π(θ1|θ(j−1)

2 , . . . , θ
(j−1)
d )

θ
(j)
2 ∼ π(θ2|θ(j)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
d )

...
θ

(j)
d ∼ π(θd |θ

(j)
1 , . . . , θ

(j)
d−1)

3. Increment j to j + 1 and return to step (2) until convergence.



Example: λ known

# Simple example with known precision, unknown mean.
set.seed(88) # just to replicate this example
lambda=0.5
mu=3.5
n=5
y=rnorm(n,mean=mu,sd=sqrt(1/lambda))
hist(y)



Example: λ known
Histogram of y
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Example: λ known

N=1000
ybar=mean(y)
mu0=0
lambda0=0.5
draw.mu=rep(0,N)
lambda1=n*lambda+lambda0
mu1=1/lambda1*(n*lambda*ybar+lambda0*mu0)
for(i in 2:N) {

draw.mu[i]=rnorm(1,mean=mu1,sd=sqrt(1/lambda1))
}



Example: λ known
plot(draw.mu,type='l',xlab="Iteration",ylab=expression(mu))
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Example: λ known

# Drop "burn-in"
draw.mu=draw.mu[(N/2):N]

# Plot the prior, posterior and the truth
x=seq(-10,10,length=100)
dens.prior=dnorm(x,mean=mu0,sd=1/lambda0)
plot(x,dens.prior,type='l',col="grey",lwd=2,xlim=c(-10,10),ylim=c(0,1),xlab=expression(mu),ylab="Density")
lines(density(draw.mu),lwd=2,col="blue")
abline(v=mu,lty=2,lwd=2)



Example: λ known
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Example: λ unknown

# Simple example with unknown precision, unknown mean.
set.seed(88) # just to replicate this example
lambda=0.5
mu=3.5
n=5
y=rnorm(n,mean=mu,sd=sqrt(1/lambda))
hist(y,xlim=c(0,7))



Example: λ unknown
Histogram of y
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Example: λ unknown

N=5000
ybar=mean(y)
mu0=0
lambda0=0.25
alpha=1
beta=1
draw.mu=rep(0,N)
draw.lambda=rep(0,N)



Example: λ unknown

for(i in 2:N) {
# Gibbs step for mu
lambda1=n*draw.lambda[i-1]+lambda0
mu1=1/lambda1*(n*draw.lambda[i-1]*ybar+lambda0*mu0)
draw.mu[i]=rnorm(1,mean=mu1,sd=sqrt(1/lambda1))

# Gibbs step for lambda
alpha.n=alpha+n/2
beta.n=beta+0.5*sum(y-draw.mu[i])^2
draw.lambda[i]=rgamma(1,shape=alpha.n,rate=beta.n)

}



Example: λ unknown
par(mfrow=c(1,2))
plot(draw.mu,type='l',xlab="Iteration",ylab=expression(mu))
plot(draw.lambda,type='l',xlab="Iteration",ylab=expression(lambda))
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Example: λ unknown

# Drop "burn-in"
draw.mu=draw.mu[(N/2):N]
draw.lambda=draw.lambda[(N/2):N]

# Plot the prior, posterior and the truth
x=seq(-10,10,length=100)
dens.prior=dnorm(x,mean=mu0,sd=1/lambda0)
plot(x,dens.prior,type='l',col="grey",lwd=2,xlim=c(-10,10),ylim=c(0,1),xlab=expression(mu),ylab="Density")
lines(density(draw.mu),lwd=2,col="blue")
abline(v=mu,lty=2,lwd=2)
x=seq(0,10,length=100)
dens.prior=dgamma(x,shape=alpha,rate=beta)
plot(x,dens.prior,type='l',col="grey",lwd=2,xlim=c(0,10),ylim=c(0,1),xlab=expression(lambda),ylab="Density")
lines(density(draw.lambda),lwd=2,col="blue")
abline(v=lambda,lty=2,lwd=2)



Example: λ unknown

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

D
en

si
ty



The Gibbs Sampler

• Under mild conditions, the draws θ(1), . . . ,θ(n) form an
ergodic sequence of random variables (a Markov Chain) with
stationary distribution π(θ|y).

• In practice, we need to allow the chain to “burn-in” for m
iterations and then take an additional n samples as draws from
the posterior distribution.

• In some situations, even full conditionals are not available in
closed form. In this case we can use another algorithm to get
approximate samples from the full conditionals - the
Metropolis-Hastings algorithm.



Metropolis-Hastings (MH) Algorithm
• MH defines the transition density, p(θ, θ′), of a Markov Chain

such that the posterior of interest, π(θ|y) is the stationary
distribution of the chain.

• First, define a proposal distribution, q(θ′; θ). This is also called
the transition kernel, since it defines the proposed probability
from being in state θ and moving to state θ′:
q(θ′; θ) ≡ q(θ → θ′).

• Next, define the acceptance probability of a proposed state θ′
as

α = min
{
1, π(θ′|y)q(θ′ → θ)
π(θ|y)q(θ → θ′)

}
• Accept θ′ as a draw from π(θ|y) with probability α, otherwise

reject.
• Following this procedure for a sequence of proposed θ’s

simulates draws from the posterior distribution of interest.



Metropolis-Hastings (MH) Algorithm

• Selecting q() is important - it is a flexible tool to help
construct an efficient sampling algorithm.

• Roberts and Smith† show that if q() is irreducible and
aperiodic and α > 0 for every possible value of (θ, θ′) then the
algorithm defines an irreducible and aperiodic Markove Chain
with limiting distribution π(θ|y)

• In particular, it is ergodic which means we can estimate
quantites of interest from a single realization of the sample path
– recall we saw this earlier!

† G.O. Roberts and A.F.M. Smith: Simple conditions for the convergence of the Gibbs
sampler and Metropolis-Hastings algorithms, Stochastic processes and their
applications, vol.49, pp.207–216 (1994).



Metropolis-Hastings (MH) Algorithm

• If q() is symmetric, then q(θ; θ′) = q(θ′; θ) for every (θ, θ′), so
α reduces to

α = min
{
1, π(θ′|y)
π(θ|y)

}
• Since the normalizing constant for π(θ|y) is the same for both

numerator and denominator, to calculate α we only require
L(θ|y) and π(θ).

• We can incorporate MH steps to generate approximate samples
from the full conditionals so that we can generate samples from
the joint posterior using a Gibbs-like algorithm.



Metropolis-Hastings (MH) Algorithm

So our final algorithm is:

1. Initialize j = 1 and set arbitrary initial value for θ(0).

2. Set θ(j) = θ(j−1).

3. For k = 1, . . . , d
3.1 Draw proposal θ′k ∼ qk(θ′k ; θ(j)

k )
3.2 Calculate

α = min
{
1,

L(θ′k ,θ
(j)
−k |y)π(θ′k ,θ

(j)
−k)q(θ′k ; θ(j)

k )
L(θ(j)|y)π(θ(j))q(θ(j)

k ; θ′k)

}

3.3 Generage u ∼ Unif(0, 1). If u ≤ α then accept move to
θ

(j)
k = θ′k ; otherwise reject move and keep θ(j)

k = θ
(j−1)
k .

4. Increment j to j + 1 and return to step (2) until convergence.



Metropolis-Hastings (MH) Algorithm
• Success of MH depends on maintaining a reasonably high

acceptance rate (α), which depends on a good proposal
distribution q.

• For continuous scalar parameters, a good acceptance rate is
∼ 44%. For higher-dimensional parameters, a good acceptance
rate is smaller. Generally we are reasonably happy if
23% < α < 49%.

• Random-walk proposal distribution, q:

θ′ = θ + ω, ω ∼ N(0, σ2q)

where σ2q is a user-specified constant chosen to tune α to a
desired rate.

• Uniform proposal distribution, q:

θ′ = θ + u, u ∼ Unif (−aq, aq)

where aq is a user-specified constant chosen to tune α to a
desired rate.



Metropolis-within-Gibbs

• If we have full conditionals in closed-form for θ1, . . . , θl then we
can combine Gibbs steps for these with MH steps for
θl+1, . . . , θd :

1. Initialize j = 1 and set arbitrary initial value for θ(0).

2. Set θ(j) = θ(j−1).

3. Sample θ1, . . . , θl using the Gibbs algorithm
4. Sample θl+1, . . . , θd using the Metropolis-Hastings algorithm

(i.e. steps 3.1-3.3).
5. Increment j to j + 1 and return to step (2) until convergence.


