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Question 1

Show that the Gibbs step for θj ∈ (θ1, . . . , θk) is a special case of a Metropolis-Hastings step with an acceptance
probability of 1.

Question 2

Many of the models we have seen rely on conjugacy between Normal distributions and between the Normal and
Gamma distributions. We derived some simple cases in the class notes, here we will look at their more general
forms.

Consider data Y distributed as
Y|λ−1R ∼ N

(
Fβ, λ−1R

)
and priors

β ∼ N (µ,Σ)

and
λ ∼ Gamma(α, β),

where Y is an n× 1 vector, λ is a scalar, β is p× 1, F is n× p, R is n× n, µ is p× 1 and Σ is p× p.

(a) Derive the full conditional distribution β|Y, ·.

(b) Derive the full conditional distribution λ|Y, ·.

Question 3

Write functions to fit the Bayesian Gaussian Process model including linear trend,

Y|β, λ,R ∼ N
(
Fβ, λ−1R

)
β ∼ N

(
µ, λ−1µ I

)
where I is the p× p identity matrix and

Rij =

D∏
d=1

ρ
(xid−xjd)2
d
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where xi = (xi1, . . . , xiD) ∈ RD and
ρd ∼ Beta(α, β).

In addition, write functions to draw samples from the posterior predictive distribution,

π(y(x)|Y).

Test your functions by simulating “fake” data in p = 1 dimensions by drawing from the GP for particular settings
of the prior parameters that you choose, and checking that the resulting posterior distributions concentrate on
the parameter settings you used to simulate your data.

Question 4

On the website I have included the dataset co2plume.dat (you may load it using R’s load() command). This
dataset consists of outputs from a deterministic simulator used to study the dispersion of CO2 emissions from
coal-fired power plants. The response is CO2 concentration and the inputs are time and stack inerts, a reaction
parameter.

(a) Using your code from question (3), fit the Bayesian GP model with linear trend. Thoughtfully motivate
your choice of priors. Perform some simple diagnostic checks of the posterior distribution to ensure the
MCMC algorithm is mixing well. Using your fitted model, predict the held-out observations provided in
the co2holdout.dat file. Summarize your out-of-sample predictions in terms of MSE and in terms of the
empirical coverage of a 95% credible interval from your posterior predictive distribution.

(b) Repeat the analysis in part (a) using the Bayesian treed gaussian process model available as the function
btgp() in the R library tgp. Here, you may use the default priors as shown in class.

(c) Repeat the analysis in part (a) using the Bayesian single-tree model available in R library BayesTree.

(d) Repeat the analysis in part (a) using the BART model available in R library BayesTree.

Question 5

Consider data Y generated according to the process

Y (x) = f(x) + s(x)Z

where Z is i.i.d. Normal(0, 1) and x ∈ RD, and where we assume that the mean function is a realization of a
single-tree process

f(x) = g(x; T ,M)

with terminal node parametersM = (µ1, . . .) having conjugate prior distributions µj ∼ N(0, τ2) and the variance
is also modeled as a realization of a single-tree process,

s(x)2 ∼ h(x; T ′,M′)

with terminal node parametersM′ = (s21, . . .) having conjugate prior distributions s2j ∼ χ−2(ν, λ). Both trees are
regularized by the depth-penalizing prior

α(1 + d)−β
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for any node with depth d. The setup then is identical to the single-tree model discussed in class except the
variance is now also modeled as a function of x using a single tree.

The posterior of this model can then be expressed as

π(T ,M, T ′,M′|Y) ∝ L(Y|T ,M, T ′,M′)π(M|T )π(T )π(M′|T ′)π(T ′),

where π(M|T ) =
∏m
j=1 π(µj) where m = |M| is the number of terminal nodes in tree T and π(M′|T ′) =∏m′

j=1 π(s2j ) where m′ = |M′| is the number of terminal nodes in tree T ′.

(a) Derive the full conditional for the µj , π(µj |·).

(b) Derive the integrated likelihood,
∫
µj
L(µj |·)π(µj)dµj .

(c) Derive the full conditional for the s2j , π(s2j |·).

(d) Derive the integrated likelihood,
∫
s2j
L(s2j |·)π(s2j )ds

2
j .
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