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Bayesian Treed Gaussian Process Model

= Gramacy and Leet propose to use GP models in the terminal
nodes of a Bayesian tree.

= |dea is to gain additional flexibility of the GP model in different
areas of predictor space.

= And reduce the computationally challenges of inverting large
correlation matrices due to the localization effect of the treed
GP approach.

= Basically combines the Bayesian scalar-terminal-node single tree
model we have seen with the Bayesian GP model we have seen.

= But their formulation has some differences, and since there is
more than one GP there are now a lot more parameters to deal
with — increased complexity of sampling algorithm.

t R. B. Gramacy and H. K. H. Lee: Bayesian Treed Gaussian Process Models With an
Application to Computer Modeling, Journal of the American Statistical Association,
vol.103:, pp.1119-1130 (2008).



Bayesian Single Tree Model
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Figure 1: A Single Tree with Scalar Terminal Nodes



Bayesian Treed GP Model

Xg < / X5 C Xs
GP3

O [=1 * .

X, <d Xp=d GP1 GP2

‘ GP1 ‘ ‘ GP2 ‘

Figure 2: A Single Tree with GP Terminal Nodes
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Bayesian Treed Gaussian Process Model

Suppose our tree T divides the predictor space into R regions,
labeled r, forv =1,... R.

Each region has data D, = [X,,Z,] of n, observations.
Let m be the total number of predictors plus the intercept.

Their general formulation includes a mean model for the GP
(while for simplicity we assumed it was 0).

The model is specified in multiple hierarchies.



GP Model within a given terminal node v.

= Given we are in region r, (i.e. terminal node ) the GP model
for the data mapping to this node is

ZV|/31/’O-1%7 Kl/ ~ an/ (FuﬂngKu)

where 3, is an m x 1 parameter vector, 2 is a scalar

parameter,
Fu = [l,xu]

dth QVvrnda - fied
and the cerrelatien is specified as EWM‘C L hn
2
Xii — Xk
Ko (xj,xk) = exp <Z ’ﬂd,l‘> + 80x;=x,
1

where d; > 0 is a correlation length scale parameter for each
dimension.
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= The prior on the regression coeffficient is

B,lo2, 72, W, By ~ N (B0,0373W>.

= The prior on the scalar marginal variance is

O' ~ InverseGamma <ag Cla)
272
where oy, g, are treated as fixed, known hyperparameters.

= Note that if A~ x72(a, b?) then A ~ InverseGamma(2, 371’2)
So their formulation is relatively similar to the
scaled-inverse-chisquared formulation we had in our scalar
single tree model.

= Think of g, as a, X scale.
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Prior on GP regression coefficient, 3,,.

= The prior on the regression coeffficient is
/3V|JV? W /60 ~ N (:3070—37—3W> .

= The prior on the scalar marginal node-specific variance
parameter is

InverseGamma (aT qT>
7- ~ Inv
272

where a, g, are treated as fixed, known hyperparameters.
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Prior on GP regression coefficient, 3,,.

The prior on the regression coeffficient is
BL10%, T2, W, By ~ Nim (Bo, 2T2W) .
The prior on the mean priors precision is
W1 ~ Wishart ((pV)*l, p)

where p and V are treated as fixed, known hyperparameters.

We can think of V as some a-priori information about the
relatedness of the regression coefficients. Note that this is a
common parameter across all the terminal nodes.

p is a degrees of freedom parameter. A common weakly
informative choice is to take p = m.
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Prior on correlation parameters

= For the correlation length scale parameters d; and “nugget”
parameter g,

m(dy, 8) = 7(gv) Hﬂ(dl/,i)

= Note that these parameters are unique in each region r,, so for
instance the correlation behavior of the response can be
different in each region.

= The specific priors used are
g ~ Exponential(\)

where )\ is a user-specified hyperparameter, and

1
dyi~ 5 [Gamma(a =1, 8 = 20) + Gamma(a = 10, 8 = 10)] .



Mixture prior on correlation parameters

x=seq(0,2,length=1000)

da=dgamma (x,shape=1,rate=20)

db=dgamma (x , shape=10,rate=10)

d=0.5%*da+0.5%db

par (mfrow=c(1,2))

plot(x,d,type='1l"',1lwd=2,xlab=expression(d[nu]),
ylab="Density")

lines(x,da,lwd=0.5,col="grey")

lines(x,db,1wd=0.5,col="grey")
abline(v=1/20,1ty=2,col="grey")
abline(v=10/10,1ty=2,col="grey")




Mixture prior on correlation parameters

set.seed(99)

x=seq(0,1,length=100)

D=abs (outer (x,x,"-"))

Ra=exp(-D~2/(1/20))

Rb=exp (-D~2/(10/10))

La=t (chol (Ra+diag(100)*1e-10))

Lb=t (chol (Ra+diag(100)*1e-10))

Za=La%*’rnorm(100)

Zb=Lb%*%rnorm(100)

plot(x,Za,type='1l"',1lwd=2,col="blue",
ylim=range(c(Za,Zb)) ,ylab="Response")

lines(x,Zb,1lwd=2,col="red")
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Summary of parameters

So in total we have overall parameteres

6o = {W, B} .

And terminal-node specific parameters
6, — {5y,a§,du,gy,73} :

Overall,
6 =6,U{UR 0,}.

And we have user-specified hyperparameters

M, B,V, P, Qg, 4o, Or, gr.

A complicated model! /
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MCMC Algorithm

The algorithm to draw samples from the posterior of this
model proceeds as follows:

. Draw 0|T,Z

= Draw 6,|600,Z, forv=1,...,R.
= Draw §y|UR_, 0,,Z.

. Draw 716,Z



Draw 0|7, Z

= | will use the symbol “-" to mean “everything else” to reduce
notation overload.

la. Draw
v 2
Bl ~ N (B, 02V3,)
where
Tr-1 1,2\ 1
VBu = (FV Kl/ FV +W /TV)
and

B, =V;, (FIK'Z, + W8,/72) .



1b. Draw

where

and

Draw 0|7, Z

Bol- ~ Nm (BOa VEO)



Draw 0|7, Z

lc. Draw
72|- ~ InverseGamma ((a; + m)/2,(g- + b,)/2)

where
b, = (B, — Bo) "W (B, — Bo)/75

and m is the number of predictor variables including intercept.



Draw 0|7, Z

1d. Draw
1 -1
W™ |- ~ Wishart, <(,0V + V\Tv) P+ R)

where
1

(B, — Bo)(B, — Bo) -



Draw 0|7, Z

le. Draw dy1,...,forv=1,...,Rand g, forv=1,...,R.

These draws are performed using Metropolis-Hastings steps. Similar
to how we integrated some parameters out of our single-tree model,
they integrate out 3, and o2 giving

B 1/2
Vs, [(27) "™
iz w2y = (R W

(90/2)*/?T ((1/2) (00 + m))
((1/2)(go + W)@ ™2 (o /2)
x7(K,)

where ¥V, = ZIK,leV + ,38—W_150/7'2 - BVTV?BV-



Draw 0|7, Z

le. Draw dy1,...,forv=1,...,Rand g, forv=1,...,R.

= Using (1) one can perform MH steps for the d, 4% and the g,'s
similar to how we did for our Bayesian GP model. (The authors
here don't expand on how they actually implement this).



Draw 0|7, Z

1f. Draw

02| ~ InverseGamma ((ay + n,)/2, (g5 + ¥,))/2).
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Draw 7160,Z

= Similar to our Bayesian single-tree model, here the tree space
will be explored using birth/death proposals as well as
change/swap moves for updating the internal node decision
rules.

= We will look at the Birth proposal. Similar to our earlier
approach, the authors integrate out continuous parameters to
make these dimension-changing proposals easier to implement
by using Equation (1).

= However, there are some continuous parameters that cannot be
integrated in closed form, namely the d, ;'s and g,'s.
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A 1-slide crash course on RJ-MCMC

= Reversible-Jump MCMC (RJ-MCMC) is needed when the
dimension of continuous parameters will change from one
iteration of the MCMC to the next.
= A seminal paper by Peter Greent derives the appropriate
acceptance probability as
(0")q(0' — 9)
"7(0)q(0 — 0")q ‘6 }

= Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

= The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

oo

o= min{l

1 P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711-732 (1995).
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Draw 7160,Z

= In TGP, the authors use simple maps for the
dimension-changing moves so that the determinant of the
Jacobian matrix is 1.

= For example, in birth, one child node is randomly selected to
have the d,, g,'s from the parent node and the other child
node randomly draws these parameters from the prior.

= A similar approach applies for death proposals.



Draw 7160,Z

= The resulting MH ratio for birth is calculated as

|G| 7(n splits)pi(n;y terminal)m(n,) terminal)
Pl m(n terminal)

y ©(K|Z(yBotfhy, W) (K1) | Z(r)BoT(y: W)
Tr(Kl/|Zl/ﬂ0T37W)
where (7 splits) = a(1 + d,;)~° and |P| is the number of

nodes in 7 where a death proposal can occur and |G| is the
number of nodes where a birth proposal can occur.
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arrive at the posterior predictive.



Prediction

= Similar to earlier, first write down the (conditional) predictive
distribution, then marginalize with respect to the posterior to
arrive at the posterior predictive.

= The conditional distribution at a new input x mapping to
terminal node v is Normal with mean

E[Z(x)]-,x € v] = FT(x)B, + k,(x) 'K, }(Z, = F,,)
and variance

Var(Z(x)|-,x € v) = o2 (ko (x,x) — @] (x)C, a,(x))
where C;! = (K, + 72F,WF[)~1,

q.(x) = k,(x) + 72F,W,f(x) and
k,(x,x') = K, (x,x') + 72T (x)WF(x').
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Software

The model is available in the R package tgp on CRAN. Lots of
built-in demos.

There is also a vignette and publication in JSS describing more
practical aspects.

Among other things, the software can take advantage of the
tree-induced conditional independence to sample the 8,|7,Z
in parallel.

Although conditional on a tree the model will have sharp
discontinuities at the splits, posterior averaging tends to
smooth these out.

An advantage of this model is the ability to model

heteroscedasticity and non-stationarity to some degree. Some
also use this model as a means for learning where in predictor

space the behaviour of a response changes. /



Example

library(tgp)
demo (package="tgp")



Example

= Main function is btgp(). Lets look at the moto data

set.seed(88)
library(MASS)
X=data.frame(times=mcycle[,1])

Z=data.frame (accel=mcycle[,2])
fit.gp=bgp (X=X, Z=Z,verb=0)
fit.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0)




Example

par (mfrow=c(1,2))

plot (fit.gp,layout="'surf"')
plot(fit.tgp,layout="'surf')
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Example

str(fit.tgp)

## List of 31

## $ X :'data.frame': 133 obs. of 1 variable:
## ..$ times: num [1:133] 2.4 2.6 3.2 3.6 4 6.2 6.6 6.8 °
# $n : int 133

# $d : int 1

## $ Z : num [1:133] 0 -1.3 -2.7 0 -2.7 -2.7 -2.7 -
## $ nn : int O

## $ Xsplit :'data.frame': 133 obs. of 1 variable:
## ..$ times: num [1:133] 2.4 2.6 3.2 3.6 4 6.2 6.6 6.8 °
## ¢ BTE : int [1:3] 2000 7000 2

##* $ R : int 1

## $ linburn : logi FALSE

# $ g : int [1:2] 0 O

## ¢ dparams : num [1:45] 0.5 2101100001 ...



Example

fit2.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0, trace=TRUE)
par (mfrow=c(1,2))
plot(fit2.tgp$trace$hier$s2.a0,type="'1")

plot (fit2.tgp$trace$preds$Zp.ks28XX1,type="'1")
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Example

fit3.tgp=btgp (X=X, Z=Z,bprior="b0",verb=0,trace=TRUE,BT

par (mfrow=c(1,2))
plot (fit3.tgp$trace$hier$s2.a0,type="1")
plot(fit3.tgp$trace$preds$Zp.ks2$XX1,type="'1")
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Example

= What happens if we try our stationary example from earlier?

set.seed(88)
x=seq(0,1,length=10)
D=abs (outer(x,x,"-"))
R=0.001"(D"2)

L=t (chol (R))

Z=LY*%rnorm(10)
X=data.frame (x)
Z=data.frame(Z)
plot(X,Z,pch=20,col="red" ,xlab="X",ylab="Response")
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Example

fit.gp=bgp(X=X,Z=Z,verb=0)
fit.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0)

par (mfrow=c(1,2))
plot(fit.gp,layout="'surf"')
plot(fit.tgp,layout='surf')
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