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Bayesian Treed Gaussian Process Model
• Gramacy and Lee† propose to use GP models in the terminal

nodes of a Bayesian tree.

• Idea is to gain additional flexibility of the GP model in di�erent
areas of predictor space.

• And reduce the computationally challenges of inverting large
correlation matrices due to the localization e�ect of the treed
GP approach.

• Basically combines the Bayesian scalar-terminal-node single tree
model we have seen with the Bayesian GP model we have seen.

• But their formulation has some di�erences, and since there is
more than one GP there are now a lot more parameters to deal
with – increased complexity of sampling algorithm.

† R. B. Gramacy and H. K. H. Lee: Bayesian Treed Gaussian Process Models With an
Application to Computer Modeling, Journal of the American Statistical Association,

vol.103:, pp.1119–1130 (2008).
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Bayesian Single Tree Model

The Coordinate View of g(x;")  
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Figure 1: A Single Tree with Scalar Terminal Nodes



Bayesian Treed GP Model
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Figure 2: A Single Tree with GP Terminal Nodes



Bayesian Treed Gaussian Process Model

• Suppose our tree T divides the predictor space into R regions,
labeled r‹ for ‹ = 1, . . . , R.

• Each region has data D‹ = [X‹ , Z‹ ] of n‹ observations.
• Let m be the total number of predictors plus the intercept.
• Their general formulation includes a mean model for the GP

(while for simplicity we assumed it was 0).
• The model is specified in multiple hierarchies.
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GP Model within a given terminal node ‹.

• Given we are in region r‹ (i.e. terminal node ‹) the GP model
for the data mapping to this node is

Z‹ |—‹ , ‡2

‹ , K‹ ≥ Nn‹

1
F‹—‹ , ‡2

‹K‹

2

where —‹ is an m ◊ 1 parameter vector, ‡2
‹ is a scalar

parameter,
F‹ = [1, X‹ ]

and the correlation is specified as

K‹(xj , xk) = exp
A

ÿ

i

|xji ≠ xki |2

di

B

+ g”xj =xk

where di > 0 is a correlation length scale parameter for each
dimension.

counted
mean Correlation



Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the mean prior’s mean is

—0 ≥ Nm(µ, B)

where µ and B are treated as fixed, known hyperparameters.
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where –‡, q‡ are treated as fixed, known hyperparameters.
• Note that if A ≥ ‰≠2(a, b2) then A ≥ InverseGamma(a
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, ab2

2
).

So their formulation is relatively similar to the
scaled-inverse-chisquared formulation we had in our scalar
single tree model.

• Think of q‡ as –‡ ◊ scale.
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• The prior on the mean priors precision is

W≠1 ≥ Wishart
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(flV)≠1, fl

2

where fl and V are treated as fixed, known hyperparameters.
• We can think of V as some a-priori information about the

relatedness of the regression coe�cients. Note that this is a
common parameter across all the terminal nodes.

• fl is a degrees of freedom parameter. A common weakly
informative choice is to take fl = m.
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Prior on correlation parameters
• For the correlation length scale parameters di and “nugget”

parameter g ,

fi(d‹ , g‹) = fi(g‹)
Ÿ

i
fi(d‹,i)

• Note that these parameters are unique in each region r‹ , so for
instance the correlation behavior of the response can be
di�erent in each region.

• The specific priors used are

g‹ ≥ Exponential(⁄)

where ⁄ is a user-specified hyperparameter, and

d‹,i ≥ 1
2 [Gamma(– = 1, — = 20) + Gamma(– = 10, — = 10)] .
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Mixture prior on correlation parameters

x=seq(0,2,length=1000)

da=dgamma(x,shape=1,rate=20)

db=dgamma(x,shape=10,rate=10)

d=0.5*da+0.5*db

par(mfrow=c(1,2))

plot(x,d,type=�l�,lwd=2,xlab=expression(d[nu]),

ylab="Density")

lines(x,da,lwd=0.5,col="grey")

lines(x,db,lwd=0.5,col="grey")

abline(v=1/20,lty=2,col="grey")

abline(v=10/10,lty=2,col="grey")



Mixture prior on correlation parameters

set.seed(99)

x=seq(0,1,length=100)

D=abs(outer(x,x,"-"))

Ra=exp(-D^2/(1/20)) # like rho=2e-9

Rb=exp(-D^2/(10/10)) # like rho=0.37

La=t(chol(Ra+diag(100)*1e-10))

Lb=t(chol(Ra+diag(100)*1e-10))

Za=La%*%rnorm(100)

Zb=Lb%*%rnorm(100)

plot(x,Za,type=�l�,lwd=2,col="blue",

ylim=range(c(Za,Zb)),ylab="Response")

lines(x,Zb,lwd=2,col="red")



Mixture prior on correlation parameters
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Summary of parameters

• So in total we have overall parameteres

◊0 = {W, —0} .

• And terminal-node specific parameters

◊‹ =
Ó

—‹ , ‡2

‹ , d‹ , g‹ , ·2

‹

Ô
.

• Overall,
◊ = ◊0 fi {fiR

‹=1◊‹}.

• And we have user-specified hyperparameters

µ, B, V, fl, –‡, q‡, –· , q· .

• A complicated model!
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MCMC Algorithm

• The algorithm to draw samples from the posterior of this
model proceeds as follows:

1. Draw ◊|T , Z

• Draw ◊‹ |◊0, Z‹ for ‹ = 1, . . . , R.
• Draw ◊0| fiR

‹=1
◊‹ , Z.

2. Draw T |◊, Z
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Draw ◊|T , Z

• I will use the symbol “·” to mean “everything else” to reduce
notation overload.

1a. Draw
—‹ |· ≥ Nm

1
—̃‹ , ‡2

‹V—̃‹

2

where
V—̃‹

=
1
FT

‹ K≠1

‹ F‹ + W≠1/·2

‹

2≠1

and
—̃‹ = V—̃‹

1
FT

‹ K≠1

‹ Z‹ + W≠1—0/·2

‹

2
.



Draw ◊|T , Z

1b. Draw
—0|· ≥ Nm

1
—̃0, V—̃0

2

where

V—̃0
=

A

B≠1 + W≠1

Rÿ

‹=1

(‡‹·‹)≠2

B≠1

and

—̃0 = V—̃0

A

B≠1µ + W≠1

Rÿ

‹=1

—‹(‡‹·‹)≠2

B

.



Draw ◊|T , Z

1c. Draw

·2

‹ |· ≥ InverseGamma ((–· + m)/2, (q· + b‹)/2)

where
b‹ = (—‹ ≠ —0)T W≠1(—‹ ≠ —0)/‡2

n

and m is the number of predictor variables including intercept.



Draw ◊|T , Z

1d. Draw

W≠1|· ≥ Wishartm

31
flV + V‚W

2≠1

, fl + R
4

where

V‚W =
Rÿ

‹=1

1
(‡‹·‹)2

(—‹ ≠ —0)(—‹ ≠ —0)T .



Draw ◊|T , Z
1e. Draw d‹,1, . . . , for ‹ = 1, . . . , R and g‹ for ‹ = 1, . . . , R.

These draws are performed using Metropolis-Hastings steps. Similar
to how we integrated some parameters out of our single-tree model,
they integrate out —‹ and ‡2

‹ giving

fi(K‹ |Z‹ , —0, W, ·2, Z‹) =
A

|V~—‹ |(2fi)≠n‹

|K‹ ||W|·2m

B1/2

(1)

◊ (q‡/2)–‡/2� ((1/2)(–‡ + n‹))
((1/2)(q‡ + �‹))(–‡+n‹)/2 �(–‡/2)

◊fi(K‹)

where �‹ = ZT
‹ K≠1

‹ Z‹ + —T
0 W≠1—0/·2 ≠ —̃

T
‹ V≠1

—̃‹
—̃‹ .



Draw ◊|T , Z

1e. Draw d‹,1, . . . , for ‹ = 1, . . . , R and g‹ for ‹ = 1, . . . , R.

• Using (1) one can perform MH steps for the d‹ , i ’s and the g‹ ’s
similar to how we did for our Bayesian GP model. (The authors
here don’t expand on how they actually implement this).

else



Draw ◊|T , Z

1f. Draw

‡2

‹ |· ≥ InverseGamma ((–‡ + n‹)/2, (q‡ + �‹)/2) .



Draw T |◊, Z

• Similar to our Bayesian single-tree model, here the tree space
will be explored using birth/death proposals as well as
change/swap moves for updating the internal node decision
rules.

• We will look at the Birth proposal. Similar to our earlier
approach, the authors integrate out continuous parameters to
make these dimension-changing proposals easier to implement
by using Equation (1).

• However, there are some continuous parameters that cannot be
integrated in closed form, namely the d‹,i ’s and g‹ ’s.
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• However, there are some continuous parameters that cannot be
integrated in closed form, namely the d‹,i ’s and g‹ ’s.



A 1-slide crash course on RJ-MCMC
• Reversible-Jump MCMC (RJ-MCMC) is needed when the

dimension of continuous parameters will change from one
iteration of the MCMC to the next.

• A seminal paper by Peter Green† derives the appropriate
acceptance probability as

– = min
;

1,
fi(◊Õ)q(◊Õ æ ◊)

fi(◊)q(◊ æ ◊Õ)q(u)

----
ˆ◊Õ

ˆ(◊, u)

----

<
.

• Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

• The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

† P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711–732 (1995).



A 1-slide crash course on RJ-MCMC
• Reversible-Jump MCMC (RJ-MCMC) is needed when the

dimension of continuous parameters will change from one
iteration of the MCMC to the next.

• A seminal paper by Peter Green† derives the appropriate
acceptance probability as

– = min
;

1,
fi(◊Õ)q(◊Õ æ ◊)

fi(◊)q(◊ æ ◊Õ)q(u)

----
ˆ◊Õ

ˆ(◊, u)

----

<
.

• Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

• The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

† P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711–732 (1995).



A 1-slide crash course on RJ-MCMC
• Reversible-Jump MCMC (RJ-MCMC) is needed when the

dimension of continuous parameters will change from one
iteration of the MCMC to the next.

• A seminal paper by Peter Green† derives the appropriate
acceptance probability as

– = min
;

1,
fi(◊Õ)q(◊Õ æ ◊)

fi(◊)q(◊ æ ◊Õ)q(u)

----
ˆ◊Õ

ˆ(◊, u)

----

<
.

• Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

• The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

† P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711–732 (1995).



A 1-slide crash course on RJ-MCMC
• Reversible-Jump MCMC (RJ-MCMC) is needed when the

dimension of continuous parameters will change from one
iteration of the MCMC to the next.

• A seminal paper by Peter Green† derives the appropriate
acceptance probability as

– = min
;

1,
fi(◊Õ)q(◊Õ æ ◊)

fi(◊)q(◊ æ ◊Õ)q(u)

----
ˆ◊Õ

ˆ(◊, u)

----

<
.

• Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

• The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

† P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711–732 (1995).



Draw T |◊, Z

• In TGP, the authors use simple maps for the
dimension-changing moves so that the determinant of the
Jacobian matrix is 1.

• For example, in birth, one child node is randomly selected to
have the d‹ , g‹ ’s from the parent node and the other child
node randomly draws these parameters from the prior.

• A similar approach applies for death proposals.
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Draw T |◊, Z

• The resulting MH ratio for birth is calculated as

|G|
|P|

fi(÷ splits)pi(÷(l) terminal)fi(÷(r) terminal)
fi(÷ terminal)

◊
fi(K(l)|Z(l)—0·2

(l), W)fi(K(r)|Z(r)—0·2

(r)
, W)

fi(K‹ |Z‹—0·2
‹ , W)

where fi(÷ splits) = a(1 + d÷)≠b and |P| is the number of
nodes in T where a death proposal can occur and |G| is the
number of nodes where a birth proposal can occur.



Prediction

• Similar to earlier, first write down the (conditional) predictive
distribution, then marginalize with respect to the posterior to
arrive at the posterior predictive.

• The conditional distribution at a new input x mapping to
terminal node ‹ is Normal with mean

E [Z (x)|·, x œ ‹] = fT (x)—̃‹ + k‹(x)T K≠1

‹ (Z‹ ≠ F‹—̃‹)

and variance

Var(Z (x)|·, x œ ‹) = ‡2

‹

1
k‹(x, x) ≠ qT

‹ (x)C≠1

‹ q‹(x)
2

where C≠1
‹ = (K‹ + ·2

‹ F‹WFT
‹ )≠1,

q‹(x) = k‹(x) + ·2
‹ F‹W‹f(x) and

k‹(x, xÕ) = K‹(x, xÕ) + ·2
‹ fT (x)Wf (xÕ).
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Software

• The model is available in the R package tgp on CRAN. Lots of
built-in demos.

• There is also a vignette and publication in JSS describing more
practical aspects.

• Among other things, the software can take advantage of the
tree-induced conditional independence to sample the ◊‹ |T , Z
in parallel.

• Although conditional on a tree the model will have sharp
discontinuities at the splits, posterior averaging tends to
smooth these out.

• An advantage of this model is the ability to model
heteroscedasticity and non-stationarity to some degree. Some
also use this model as a means for learning where in predictor
space the behaviour of a response changes.
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Example

library(tgp)

demo(package="tgp")



Example

• Main function is btgp(). Lets look at the moto data.

set.seed(88)

library(MASS)

X=data.frame(times=mcycle[,1])

Z=data.frame(accel=mcycle[,2])

fit.gp=bgp(X=X,Z=Z,verb=0) # Regular GP fit (no tree)

fit.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0) # Treed GP



Example

# Plot both fits (posterior mean predictions) side by side

par(mfrow=c(1,2))

plot(fit.gp,layout=�surf�)

plot(fit.tgp,layout=�surf�)
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Example
# Model details:

str(fit.tgp)

## List of 31

## $ X :�data.frame�: 133 obs. of 1 variable:

## ..$ times: num [1:133] 2.4 2.6 3.2 3.6 4 6.2 6.6 6.8 7.8 8.2 ...

## $ n : int 133

## $ d : int 1

## $ Z : num [1:133] 0 -1.3 -2.7 0 -2.7 -2.7 -2.7 -1.3 -2.7 -2.7 ...

## $ nn : int 0

## $ Xsplit :�data.frame�: 133 obs. of 1 variable:

## ..$ times: num [1:133] 2.4 2.6 3.2 3.6 4 6.2 6.6 6.8 7.8 8.2 ...

## $ BTE : int [1:3] 2000 7000 2

## $ R : int 1

## $ linburn : logi FALSE

## $ g : int [1:2] 0 0

## $ dparams : num [1:45] 0.5 2 10 1 1 0 0 0 0 1 ...

## $ itemps :List of 5

## ..$ c0n0 : int [1:2] 0 0

## ..$ k : num 1

## ..$ pk : num 1

## ..$ counts: int 0

## ..$ lambda: chr "opt"

## $ bimprov : int 0

## $ Zp.mean : num [1:133] -1.32 -1.38 -1.58 -1.62 -1.75 ...

## $ Zp.km : num [1:133] -1.37 -1.42 -1.56 -1.64 -1.73 ...

## $ Zp.vark : num [1:133] 0.04625 0.03815 0.02037 0.01288 0.00806 ...

## $ Zp.q : num [1:133] 5.13 4.99 4.98 5.04 4.85 ...

## $ Zp.s2 : num [1:133] 2.48 2.41 2.21 2.37 2.3 ...

## $ Zp.ks2 : num [1:133] 2.36 2.36 2.36 2.36 2.36 ...

## $ Zp.q1 : num [1:133] -3.86 -3.84 -4.09 -4.11 -4.13 ...

## $ Zp.med : num [1:133] -1.32 -1.4 -1.58 -1.65 -1.77 ...

## $ Zp.q2 : num [1:133] 1.271 1.147 0.895 0.931 0.727 ...

## $ ess : num 2500

## $ gpcs :�data.frame�: 1 obs. of 4 variables:

## ..$ grow : num 0.032

## ..$ prune : num 0.0276

## ..$ change: num 0.385

## ..$ swap : num 1

## $ response: chr "accel"

## $ improv :�data.frame�: 0 obs. of 1 variable:

## ..$ rank: int(0)

## $ parts : num [1:12, 1] 2.4 13.8 104 102 13.8 39.4 105 102 39.4 57.6 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : NULL

## .. ..$ : chr "V1"

## $ trees :List of 3

## ..$ : NULL

## ..$ :�data.frame�: 3 obs. of 23 variables:

## .. ..$ rows : int [1:3] 1 2 3

## .. ..$ var : Factor w/ 2 levels "<leaf>","0": 2 1 1

## .. ..$ n : int [1:3] 133 21 112

## .. ..$ dev : int [1:3] 0 0 0

## .. ..$ yval : num [1:3] 1 0.011 0.0265

## .. ..$ splits.cutleft : Factor w/ 2 levels "","<13.8 ": 2 1 1

## .. ..$ splits.cutright: Factor w/ 2 levels "",">13.8 ": 2 1 1

## .. ..$ val : num [1:3] 13.8 0 0

## .. ..$ lambda : num [1:3] 11.74 0.18 2.82

## .. ..$ s2 : num [1:3] 1 0.011 0.0265

## .. ..$ tau2 : num [1:3] 0.000837 0.000465 0.000596

## .. ..$ beta0 : num [1:3] 0 -0.018 -0.0201

## .. ..$ beta1 : num [1:3] 0 0.125 0.127

## .. ..$ bmu0 : num [1:3] -0.044 -0.0216 -0.0218

## .. ..$ bmu1 : num [1:3] 0.0692 0.1274 0.1275

## .. ..$ Vb0.0 : num [1:3] 0.00205 0.00141 0.00179

## .. ..$ Vb0.1 : num [1:3] -0.000791 -0.000104 -0.000138

## .. ..$ Vb1.0 : num [1:3] -0.000791 -0.000104 -0.000138

## .. ..$ Vb1.1 : num [1:3] 0.001572 0.000888 0.001135

## .. ..$ nug : num [1:3] 0.50363 0.00651 0.56541

## .. ..$ d1 : num [1:3] 0.83931 0.78773 0.00981

## .. ..$ b1 : num [1:3] 1 1 1

## .. ..$ ldetK : num [1:3] -81.2 -94 -37

## ..$ :�data.frame�: 5 obs. of 23 variables:

## .. ..$ rows : int [1:5] 1 2 3 6 7

## .. ..$ var : Factor w/ 2 levels "<leaf>","0": 2 1 2 1 1

## .. ..$ n : int [1:5] 133 21 112 90 22

## .. ..$ dev : int [1:5] 0 0 0 0 0

## .. ..$ yval : num [1:5] 1 0.0047 1 0.0415 0.0112

## .. ..$ splits.cutleft : Factor w/ 3 levels "","<13.8 ","<39.4 ": 2 1 3 1 1

## .. ..$ splits.cutright: Factor w/ 3 levels "",">13.8 ",">39.4 ": 2 1 3 1 1

## .. ..$ val : num [1:5] 13.8 0 39.4 0 0

## .. ..$ lambda : num [1:5] 871.905 0.111 0 3.749 0.298

## .. ..$ s2 : num [1:5] 1 0.00473 1 0.04151 0.01123

## .. ..$ tau2 : num [1:5] 0.001122 0.000683 1 0.001045 0.000766

## .. ..$ beta0 : num [1:5] 0 0.0635 0 0.0549 0.0514

## .. ..$ beta1 : num [1:5] 0 0.168 0 0.159 0.167

## .. ..$ bmu0 : num [1:5] 0.1526 0.0576 0 0.0525 0.0566

## .. ..$ bmu1 : num [1:5] 0.104 0.164 0 0.162 0.164

## .. ..$ Vb0.0 : num [1:5] 0.00177 0.00701 1 0.01027 0.00781

## .. ..$ Vb0.1 : num [1:5] 0.000618 0.001854 0 0.002675 0.002052

## .. ..$ Vb1.0 : num [1:5] 0.000618 0.001854 0 0.002675 0.002052

## .. ..$ Vb1.1 : num [1:5] 0.00203 0.00198 1 0.00298 0.00221

## .. ..$ nug : num [1:5] 0.00443 0.01063 0.1 0.38281 0.37145

## .. ..$ d1 : num [1:5] 0.99347 0.98274 0.5 0.00637 0.13464

## .. ..$ b1 : num [1:5] 1 1 1 1 1

## .. ..$ ldetK : num [1:5] -569.4 -85 0 -62.3 -15.5

## $ posts :�data.frame�: 2 obs. of 20 variables:

## ..$ height : int [1:2] 2 3

## ..$ lpost : num [1:2] 133 158

## ..$ s2.a0 : num [1:2] 3.19 2.4

## ..$ s2.g0 : num [1:2] 0.0505 0.0151

## ..$ tau2.a0: num [1:2] 12.6 18.5

## ..$ tau2.g0: num [1:2] 0.00737 0.01655

## ..$ beta0 : num [1:2] -0.0218 0.0573

## ..$ beta1 : num [1:2] 0.127 0.164

## ..$ Ti0.0 : num [1:2] 0.332 0.129

## ..$ Ti0.1 : num [1:2] 0.0389 -0.1212

## ..$ Ti1.0 : num [1:2] 0.0389 -0.1212

## ..$ Ti1.1 : num [1:2] 0.528 0.458

## ..$ d0.a0 : num [1:2] 1 1

## ..$ d0.g0 : num [1:2] 20 20

## ..$ d0.a1 : num [1:2] 10 10

## ..$ d0.g1 : num [1:2] 10 10

## ..$ nug.a0 : num [1:2] 1 1

## ..$ nug.g0 : num [1:2] 1 1

## ..$ nug.a1 : num [1:2] 1 1

## ..$ nug.g1 : num [1:2] 1 1

## $ params :List of 22

## ..$ tree : num [1:5] 0.5 2 10 1 1

## ..$ col : num 2

## ..$ meanfn : chr "linear"

## ..$ bprior : chr "b0"

## ..$ beta : num [1:2] 0 0

## ..$ Wi : num [1:2, 1:2] 1 0 0 1

## ..$ s2tau2 : num [1:2] 1 1

## ..$ s2.p : num [1:2] 5 10

## ..$ s2.lam : num [1:2] 0.2 10

## ..$ tau2.p : num [1:2] 5 10

## ..$ tau2.lam: num [1:2] 0.2 0.1

## ..$ corr : chr "expsep"

## ..$ gd : num [1:2] 0.1 0.5

## ..$ nug.p : num [1:4] 1 1 1 1

## ..$ nug.lam : chr "fixed"

## ..$ gamma : num [1:3] 0 0.2 0.7

## ..$ d.p : num [1:4] 1 20 10 10

## ..$ delta.p : NULL

## ..$ nugf.p : NULL

## ..$ d.lam : chr "fixed"

## ..$ dp.sim : num [1, 1] 0.2

## ..$ nu : NULL

## $ m0r1 : logi TRUE

## - attr(*, "class")= chr "tgp"



Example

# By default samples are not saved from the posterior,

# only the posterior quantities we want are recorded.

# Use trace=TRUE to save more information.

# However, storage may be an issue.

fit2.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0,trace=TRUE)

par(mfrow=c(1,2))

plot(fit2.tgp$trace$hier$s2.a0,type=�l�)

plot(fit2.tgp$trace$preds$Zp.ks2$XX1,type=�l�)
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Example

# Run for more iterations.

# BTE=(burn,total,every)

# Default is BTE=(2000,7000,2)

fit3.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0,trace=TRUE,BTE=c(7000,12000,2))

par(mfrow=c(1,2))

plot(fit3.tgp$trace$hier$s2.a0,type=�l�)

plot(fit3.tgp$trace$preds$Zp.ks2$XX1,type=�l�)
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Example

• What happens if we try our stationary example from earlier?

set.seed(88)

x=seq(0,1,length=10)

D=abs(outer(x,x,"-"))

R=0.001^(D^2)

L=t(chol(R))

Z=L%*%rnorm(10)

X=data.frame(x)

Z=data.frame(Z)

plot(X,Z,pch=20,col="red",xlab="X",ylab="Response")
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Example

fit.gp=bgp(X=X,Z=Z,verb=0) # Regular GP fit (no tree)

fit.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0) # Treed GP

# Plot both fits (posterior mean predictions) side by side

par(mfrow=c(1,2))

plot(fit.gp,layout=�surf�)

plot(fit.tgp,layout=�surf�)
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