
Bayesian Treed Gaussian Processes
STAT8810, Fall 2017

M.T. Pratola

October 22, 2017

Today

Bayesian Treed Gaussian Processes

Bayesian Treed Gaussian Process Model
• Gramacy and Lee† propose to use GP models in the terminal

nodes of a Bayesian tree.

• Idea is to gain additional flexibility of the GP model in di�erent
areas of predictor space.

• And reduce the computationally challenges of inverting large
correlation matrices due to the localization e�ect of the treed
GP approach.

• Basically combines the Bayesian scalar-terminal-node single tree
model we have seen with the Bayesian GP model we have seen.

• But their formulation has some di�erences, and since there is
more than one GP there are now a lot more parameters to deal
with – increased complexity of sampling algorithm.

† R. B. Gramacy and H. K. H. Lee: Bayesian Treed Gaussian Process Models With an
Application to Computer Modeling, Journal of the American Statistical Association,

vol.103:, pp.1119–1130 (2008).

Bayesian Treed Gaussian Process Model
• Gramacy and Lee† propose to use GP models in the terminal

nodes of a Bayesian tree.
• Idea is to gain additional flexibility of the GP model in di�erent

areas of predictor space.

• And reduce the computationally challenges of inverting large
correlation matrices due to the localization e�ect of the treed
GP approach.

• Basically combines the Bayesian scalar-terminal-node single tree
model we have seen with the Bayesian GP model we have seen.

• But their formulation has some di�erences, and since there is
more than one GP there are now a lot more parameters to deal
with – increased complexity of sampling algorithm.

† R. B. Gramacy and H. K. H. Lee: Bayesian Treed Gaussian Process Models With an
Application to Computer Modeling, Journal of the American Statistical Association,

vol.103:, pp.1119–1130 (2008).

Bayesian Treed Gaussian Process Model
• Gramacy and Lee† propose to use GP models in the terminal

nodes of a Bayesian tree.
• Idea is to gain additional flexibility of the GP model in di�erent

areas of predictor space.
• And reduce the computationally challenges of inverting large

correlation matrices due to the localization e�ect of the treed
GP approach.

• Basically combines the Bayesian scalar-terminal-node single tree
model we have seen with the Bayesian GP model we have seen.

• But their formulation has some di�erences, and since there is
more than one GP there are now a lot more parameters to deal
with – increased complexity of sampling algorithm.

† R. B. Gramacy and H. K. H. Lee: Bayesian Treed Gaussian Process Models With an
Application to Computer Modeling, Journal of the American Statistical Association,

vol.103:, pp.1119–1130 (2008).

Bayesian Treed Gaussian Process Model
• Gramacy and Lee† propose to use GP models in the terminal

nodes of a Bayesian tree.
• Idea is to gain additional flexibility of the GP model in di�erent

areas of predictor space.
• And reduce the computationally challenges of inverting large

correlation matrices due to the localization e�ect of the treed
GP approach.

• Basically combines the Bayesian scalar-terminal-node single tree
model we have seen with the Bayesian GP model we have seen.

• But their formulation has some di�erences, and since there is
more than one GP there are now a lot more parameters to deal
with – increased complexity of sampling algorithm.

† R. B. Gramacy and H. K. H. Lee: Bayesian Treed Gaussian Process Models With an
Application to Computer Modeling, Journal of the American Statistical Association,

vol.103:, pp.1119–1130 (2008).

Bayesian Treed Gaussian Process Model
• Gramacy and Lee† propose to use GP models in the terminal

nodes of a Bayesian tree.
• Idea is to gain additional flexibility of the GP model in di�erent

areas of predictor space.
• And reduce the computationally challenges of inverting large

correlation matrices due to the localization e�ect of the treed
GP approach.

• Basically combines the Bayesian scalar-terminal-node single tree
model we have seen with the Bayesian GP model we have seen.

• But their formulation has some di�erences, and since there is
more than one GP there are now a lot more parameters to deal
with – increased complexity of sampling algorithm.

† R. B. Gramacy and H. K. H. Lee: Bayesian Treed Gaussian Process Models With an
Application to Computer Modeling, Journal of the American Statistical Association,

vol.103:, pp.1119–1130 (2008).

Bayesian Single Tree Model

The Coordinate View of g(x;")

x2 < d x2 % d

x5 < c x5 % c

µ3 = 7

µ1 = -2 µ2 = 5

Easy to see that g(x;") is just a step function

µ1 = -2 µ2 = 5

�
µ3 = 7

c

d x2

x5

8

Figure 1: A Single Tree with Scalar Terminal Nodes

Bayesian Treed GP Model

The Coordinate View of g(x;")

x2 < d x2 % d

x5 < c x5 % c

µ3 = 7

µ1 = -2 µ2 = 5

Easy to see that g(x;") is just a step function

µ1 = -2 µ2 = 5

�
µ3 = 7

c

d x2

x5

8

GP1 GP2

GP3

GP1 GP2

GP3

Figure 2: A Single Tree with GP Terminal Nodes

Bayesian Treed Gaussian Process Model

• Suppose our tree T divides the predictor space into R regions,
labeled r‹ for ‹ = 1, . . . , R.

• Each region has data D‹ = [X‹ , Z‹] of n‹ observations.
• Let m be the total number of predictors plus the intercept.
• Their general formulation includes a mean model for the GP

(while for simplicity we assumed it was 0).
• The model is specified in multiple hierarchies.

Bayesian Treed Gaussian Process Model

• Suppose our tree T divides the predictor space into R regions,
labeled r‹ for ‹ = 1, . . . , R.

• Each region has data D‹ = [X‹ , Z‹] of n‹ observations.

• Let m be the total number of predictors plus the intercept.
• Their general formulation includes a mean model for the GP

(while for simplicity we assumed it was 0).
• The model is specified in multiple hierarchies.

Bayesian Treed Gaussian Process Model

• Suppose our tree T divides the predictor space into R regions,
labeled r‹ for ‹ = 1, . . . , R.

• Each region has data D‹ = [X‹ , Z‹] of n‹ observations.
• Let m be the total number of predictors plus the intercept.

• Their general formulation includes a mean model for the GP
(while for simplicity we assumed it was 0).

• The model is specified in multiple hierarchies.

Bayesian Treed Gaussian Process Model

• Suppose our tree T divides the predictor space into R regions,
labeled r‹ for ‹ = 1, . . . , R.

• Each region has data D‹ = [X‹ , Z‹] of n‹ observations.
• Let m be the total number of predictors plus the intercept.
• Their general formulation includes a mean model for the GP

(while for simplicity we assumed it was 0).

• The model is specified in multiple hierarchies.

Bayesian Treed Gaussian Process Model

• Suppose our tree T divides the predictor space into R regions,
labeled r‹ for ‹ = 1, . . . , R.

• Each region has data D‹ = [X‹ , Z‹] of n‹ observations.
• Let m be the total number of predictors plus the intercept.
• Their general formulation includes a mean model for the GP

(while for simplicity we assumed it was 0).
• The model is specified in multiple hierarchies.

GP Model within a given terminal node ‹.

• Given we are in region r‹ (i.e. terminal node ‹) the GP model
for the data mapping to this node is

Z‹ |—‹ , ‡2

‹ , K‹ ≥ Nn‹

1
F‹—‹ , ‡2

‹K‹

2

where —‹ is an m ◊ 1 parameter vector, ‡2
‹ is a scalar

parameter,
F‹ = [1, X‹]

and the correlation is specified as

K‹(xj , xk) = exp
A

ÿ

i

|xji ≠ xki |2

di

B

+ g”xj =xk

where di > 0 is a correlation length scale parameter for each
dimension.

counted
mean Correlation

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the mean prior’s mean is

—0 ≥ Nm(µ, B)

where µ and B are treated as fixed, known hyperparameters.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the mean prior’s mean is

—0 ≥ Nm(µ, B)

where µ and B are treated as fixed, known hyperparameters.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the scalar marginal variance is

‡2

‹ ≥ InverseGamma
3

–‡

2 ,
q‡

2

4

where –‡, q‡ are treated as fixed, known hyperparameters.
• Note that if A ≥ ‰≠2(a, b2) then A ≥ InverseGamma(a

2
, ab2

2
).

So their formulation is relatively similar to the
scaled-inverse-chisquared formulation we had in our scalar
single tree model.

• Think of q‡ as –‡ ◊ scale.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the scalar marginal variance is

‡2

‹ ≥ InverseGamma
3

–‡

2 ,
q‡

2

4

where –‡, q‡ are treated as fixed, known hyperparameters.

• Note that if A ≥ ‰≠2(a, b2) then A ≥ InverseGamma(a
2
, ab2

2
).

So their formulation is relatively similar to the
scaled-inverse-chisquared formulation we had in our scalar
single tree model.

• Think of q‡ as –‡ ◊ scale.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the scalar marginal variance is

‡2

‹ ≥ InverseGamma
3

–‡

2 ,
q‡

2

4

where –‡, q‡ are treated as fixed, known hyperparameters.
• Note that if A ≥ ‰≠2(a, b2) then A ≥ InverseGamma(a

2
, ab2

2
).

So their formulation is relatively similar to the
scaled-inverse-chisquared formulation we had in our scalar
single tree model.

• Think of q‡ as –‡ ◊ scale.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the scalar marginal variance is

‡2

‹ ≥ InverseGamma
3

–‡

2 ,
q‡

2

4

where –‡, q‡ are treated as fixed, known hyperparameters.
• Note that if A ≥ ‰≠2(a, b2) then A ≥ InverseGamma(a

2
, ab2

2
).

So their formulation is relatively similar to the
scaled-inverse-chisquared formulation we had in our scalar
single tree model.

• Think of q‡ as –‡ ◊ scale.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the scalar marginal node-specific variance
parameter is

·2

‹ ≥ InverseGamma
3

–·

2 ,
q·

2

4

where –· , q· are treated as fixed, known hyperparameters.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the scalar marginal node-specific variance
parameter is

·2

‹ ≥ InverseGamma
3

–·

2 ,
q·

2

4

where –· , q· are treated as fixed, known hyperparameters.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the mean priors precision is

W≠1 ≥ Wishart
1
(flV)≠1, fl

2

where fl and V are treated as fixed, known hyperparameters.
• We can think of V as some a-priori information about the

relatedness of the regression coe�cients. Note that this is a
common parameter across all the terminal nodes.

• fl is a degrees of freedom parameter. A common weakly
informative choice is to take fl = m.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the mean priors precision is

W≠1 ≥ Wishart
1
(flV)≠1, fl

2

where fl and V are treated as fixed, known hyperparameters.

• We can think of V as some a-priori information about the
relatedness of the regression coe�cients. Note that this is a
common parameter across all the terminal nodes.

• fl is a degrees of freedom parameter. A common weakly
informative choice is to take fl = m.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the mean priors precision is

W≠1 ≥ Wishart
1
(flV)≠1, fl

2

where fl and V are treated as fixed, known hyperparameters.
• We can think of V as some a-priori information about the

relatedness of the regression coe�cients. Note that this is a
common parameter across all the terminal nodes.

• fl is a degrees of freedom parameter. A common weakly
informative choice is to take fl = m.

Prior on GP regression coe�cient, —‹.

• The prior on the regression coe�ficient is

—‹ |‡2

‹ , ·2

‹ , W, —0 ≥ Nm
1
—0, ‡2

‹·2

‹ W
2

.

• The prior on the mean priors precision is

W≠1 ≥ Wishart
1
(flV)≠1, fl

2

where fl and V are treated as fixed, known hyperparameters.
• We can think of V as some a-priori information about the

relatedness of the regression coe�cients. Note that this is a
common parameter across all the terminal nodes.

• fl is a degrees of freedom parameter. A common weakly
informative choice is to take fl = m.

Prior on correlation parameters
• For the correlation length scale parameters di and “nugget”

parameter g ,

fi(d‹ , g‹) = fi(g‹)
Ÿ

i
fi(d‹,i)

• Note that these parameters are unique in each region r‹ , so for
instance the correlation behavior of the response can be
di�erent in each region.

• The specific priors used are

g‹ ≥ Exponential(⁄)

where ⁄ is a user-specified hyperparameter, and

d‹,i ≥ 1
2 [Gamma(– = 1, — = 20) + Gamma(– = 10, — = 10)] .

Prior on correlation parameters
• For the correlation length scale parameters di and “nugget”

parameter g ,

fi(d‹ , g‹) = fi(g‹)
Ÿ

i
fi(d‹,i)

• Note that these parameters are unique in each region r‹ , so for
instance the correlation behavior of the response can be
di�erent in each region.

• The specific priors used are

g‹ ≥ Exponential(⁄)

where ⁄ is a user-specified hyperparameter, and

d‹,i ≥ 1
2 [Gamma(– = 1, — = 20) + Gamma(– = 10, — = 10)] .

Prior on correlation parameters
• For the correlation length scale parameters di and “nugget”

parameter g ,

fi(d‹ , g‹) = fi(g‹)
Ÿ

i
fi(d‹,i)

• Note that these parameters are unique in each region r‹ , so for
instance the correlation behavior of the response can be
di�erent in each region.

• The specific priors used are

g‹ ≥ Exponential(⁄)

where ⁄ is a user-specified hyperparameter, and

d‹,i ≥ 1
2 [Gamma(– = 1, — = 20) + Gamma(– = 10, — = 10)] .

Mixture prior on correlation parameters

x=seq(0,2,length=1000)

da=dgamma(x,shape=1,rate=20)

db=dgamma(x,shape=10,rate=10)

d=0.5*da+0.5*db

par(mfrow=c(1,2))

plot(x,d,type=�l�,lwd=2,xlab=expression(d[nu]),

ylab="Density")

lines(x,da,lwd=0.5,col="grey")

lines(x,db,lwd=0.5,col="grey")

abline(v=1/20,lty=2,col="grey")

abline(v=10/10,lty=2,col="grey")

Mixture prior on correlation parameters

set.seed(99)

x=seq(0,1,length=100)

D=abs(outer(x,x,"-"))

Ra=exp(-D^2/(1/20)) # like rho=2e-9

Rb=exp(-D^2/(10/10)) # like rho=0.37

La=t(chol(Ra+diag(100)*1e-10))

Lb=t(chol(Ra+diag(100)*1e-10))

Za=La%*%rnorm(100)

Zb=Lb%*%rnorm(100)

plot(x,Za,type=�l�,lwd=2,col="blue",

ylim=range(c(Za,Zb)),ylab="Response")

lines(x,Zb,lwd=2,col="red")

Mixture prior on correlation parameters

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
10

dν

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

R
es
po
ns
e

Summary of parameters

• So in total we have overall parameteres

◊0 = {W, —0} .

• And terminal-node specific parameters

◊‹ =
Ó

—‹ , ‡2

‹ , d‹ , g‹ , ·2

‹

Ô
.

• Overall,
◊ = ◊0 fi {fiR

‹=1◊‹}.

• And we have user-specified hyperparameters

µ, B, V, fl, –‡, q‡, –· , q· .

• A complicated model!

Summary of parameters

• So in total we have overall parameteres

◊0 = {W, —0} .

• And terminal-node specific parameters

◊‹ =
Ó

—‹ , ‡2

‹ , d‹ , g‹ , ·2

‹

Ô
.

• Overall,
◊ = ◊0 fi {fiR

‹=1◊‹}.

• And we have user-specified hyperparameters

µ, B, V, fl, –‡, q‡, –· , q· .

• A complicated model!

Summary of parameters

• So in total we have overall parameteres

◊0 = {W, —0} .

• And terminal-node specific parameters

◊‹ =
Ó

—‹ , ‡2

‹ , d‹ , g‹ , ·2

‹

Ô
.

• Overall,
◊ = ◊0 fi {fiR

‹=1◊‹}.

• And we have user-specified hyperparameters

µ, B, V, fl, –‡, q‡, –· , q· .

• A complicated model!

Summary of parameters

• So in total we have overall parameteres

◊0 = {W, —0} .

• And terminal-node specific parameters

◊‹ =
Ó

—‹ , ‡2

‹ , d‹ , g‹ , ·2

‹

Ô
.

• Overall,
◊ = ◊0 fi {fiR

‹=1◊‹}.

• And we have user-specified hyperparameters

µ, B, V, fl, –‡, q‡, –· , q· .

• A complicated model!

Summary of parameters

• So in total we have overall parameteres

◊0 = {W, —0} .

• And terminal-node specific parameters

◊‹ =
Ó

—‹ , ‡2

‹ , d‹ , g‹ , ·2

‹

Ô
.

• Overall,
◊ = ◊0 fi {fiR

‹=1◊‹}.

• And we have user-specified hyperparameters

µ, B, V, fl, –‡, q‡, –· , q· .

• A complicated model! •

MCMC Algorithm

• The algorithm to draw samples from the posterior of this
model proceeds as follows:

1. Draw ◊|T , Z

• Draw ◊‹ |◊0, Z‹ for ‹ = 1, . . . , R.
• Draw ◊0| fiR

‹=1
◊‹ , Z.

2. Draw T |◊, Z

MCMC Algorithm

• The algorithm to draw samples from the posterior of this
model proceeds as follows:

1. Draw ◊|T , Z

• Draw ◊‹ |◊0, Z‹ for ‹ = 1, . . . , R.
• Draw ◊0| fiR

‹=1
◊‹ , Z.

2. Draw T |◊, Z

MCMC Algorithm

• The algorithm to draw samples from the posterior of this
model proceeds as follows:

1. Draw ◊|T , Z
• Draw ◊‹ |◊0, Z‹ for ‹ = 1, . . . , R.

• Draw ◊0| fiR
‹=1

◊‹ , Z.

2. Draw T |◊, Z

MCMC Algorithm

• The algorithm to draw samples from the posterior of this
model proceeds as follows:

1. Draw ◊|T , Z
• Draw ◊‹ |◊0, Z‹ for ‹ = 1, . . . , R.
• Draw ◊0| fiR

‹=1
◊‹ , Z.

2. Draw T |◊, Z

MCMC Algorithm

• The algorithm to draw samples from the posterior of this
model proceeds as follows:

1. Draw ◊|T , Z
• Draw ◊‹ |◊0, Z‹ for ‹ = 1, . . . , R.
• Draw ◊0| fiR

‹=1
◊‹ , Z.

2. Draw T |◊, Z

Draw ◊|T , Z

• I will use the symbol “·” to mean “everything else” to reduce
notation overload.

1a. Draw
—‹ |· ≥ Nm

1
—̃‹ , ‡2

‹V—̃‹

2

where
V—̃‹

=
1
FT

‹ K≠1

‹ F‹ + W≠1/·2

‹

2≠1

and
—̃‹ = V—̃‹

1
FT

‹ K≠1

‹ Z‹ + W≠1—0/·2

‹

2
.

Draw ◊|T , Z

1b. Draw
—0|· ≥ Nm

1
—̃0, V—̃0

2

where

V—̃0
=

A

B≠1 + W≠1

Rÿ

‹=1

(‡‹·‹)≠2

B≠1

and

—̃0 = V—̃0

A

B≠1µ + W≠1

Rÿ

‹=1

—‹(‡‹·‹)≠2

B

.

Draw ◊|T , Z

1c. Draw

·2

‹ |· ≥ InverseGamma ((–· + m)/2, (q· + b‹)/2)

where
b‹ = (—‹ ≠ —0)T W≠1(—‹ ≠ —0)/‡2

n

and m is the number of predictor variables including intercept.

Draw ◊|T , Z

1d. Draw

W≠1|· ≥ Wishartm

31
flV + V‚W

2≠1

, fl + R
4

where

V‚W =
Rÿ

‹=1

1
(‡‹·‹)2

(—‹ ≠ —0)(—‹ ≠ —0)T .

Draw ◊|T , Z
1e. Draw d‹,1, . . . , for ‹ = 1, . . . , R and g‹ for ‹ = 1, . . . , R.

These draws are performed using Metropolis-Hastings steps. Similar
to how we integrated some parameters out of our single-tree model,
they integrate out —‹ and ‡2

‹ giving

fi(K‹ |Z‹ , —0, W, ·2, Z‹) =
A

|V~—‹ |(2fi)≠n‹

|K‹ ||W|·2m

B1/2

(1)

◊ (q‡/2)–‡/2� ((1/2)(–‡ + n‹))
((1/2)(q‡ + �‹))(–‡+n‹)/2 �(–‡/2)

◊fi(K‹)

where �‹ = ZT
‹ K≠1

‹ Z‹ + —T
0 W≠1—0/·2 ≠ —̃

T
‹ V≠1

—̃‹
—̃‹ .

Draw ◊|T , Z

1e. Draw d‹,1, . . . , for ‹ = 1, . . . , R and g‹ for ‹ = 1, . . . , R.

• Using (1) one can perform MH steps for the d‹ , i ’s and the g‹ ’s
similar to how we did for our Bayesian GP model. (The authors
here don’t expand on how they actually implement this).

else

Draw ◊|T , Z

1f. Draw

‡2

‹ |· ≥ InverseGamma ((–‡ + n‹)/2, (q‡ + �‹)/2) .

Draw T |◊, Z

• Similar to our Bayesian single-tree model, here the tree space
will be explored using birth/death proposals as well as
change/swap moves for updating the internal node decision
rules.

• We will look at the Birth proposal. Similar to our earlier
approach, the authors integrate out continuous parameters to
make these dimension-changing proposals easier to implement
by using Equation (1).

• However, there are some continuous parameters that cannot be
integrated in closed form, namely the d‹,i ’s and g‹ ’s.

Draw T |◊, Z

• Similar to our Bayesian single-tree model, here the tree space
will be explored using birth/death proposals as well as
change/swap moves for updating the internal node decision
rules.

• We will look at the Birth proposal. Similar to our earlier
approach, the authors integrate out continuous parameters to
make these dimension-changing proposals easier to implement
by using Equation (1).

• However, there are some continuous parameters that cannot be
integrated in closed form, namely the d‹,i ’s and g‹ ’s.

Draw T |◊, Z

• Similar to our Bayesian single-tree model, here the tree space
will be explored using birth/death proposals as well as
change/swap moves for updating the internal node decision
rules.

• We will look at the Birth proposal. Similar to our earlier
approach, the authors integrate out continuous parameters to
make these dimension-changing proposals easier to implement
by using Equation (1).

• However, there are some continuous parameters that cannot be
integrated in closed form, namely the d‹,i ’s and g‹ ’s.

A 1-slide crash course on RJ-MCMC
• Reversible-Jump MCMC (RJ-MCMC) is needed when the

dimension of continuous parameters will change from one
iteration of the MCMC to the next.

• A seminal paper by Peter Green† derives the appropriate
acceptance probability as

– = min
;

1,
fi(◊Õ)q(◊Õ æ ◊)

fi(◊)q(◊ æ ◊Õ)q(u)

ˆ◊Õ

ˆ(◊, u)

<
.

• Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

• The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

† P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711–732 (1995).

A 1-slide crash course on RJ-MCMC
• Reversible-Jump MCMC (RJ-MCMC) is needed when the

dimension of continuous parameters will change from one
iteration of the MCMC to the next.

• A seminal paper by Peter Green† derives the appropriate
acceptance probability as

– = min
;

1,
fi(◊Õ)q(◊Õ æ ◊)

fi(◊)q(◊ æ ◊Õ)q(u)

ˆ◊Õ

ˆ(◊, u)

<
.

• Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

• The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

† P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711–732 (1995).

A 1-slide crash course on RJ-MCMC
• Reversible-Jump MCMC (RJ-MCMC) is needed when the

dimension of continuous parameters will change from one
iteration of the MCMC to the next.

• A seminal paper by Peter Green† derives the appropriate
acceptance probability as

– = min
;

1,
fi(◊Õ)q(◊Õ æ ◊)

fi(◊)q(◊ æ ◊Õ)q(u)

ˆ◊Õ

ˆ(◊, u)

<
.

• Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

• The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

† P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711–732 (1995).

A 1-slide crash course on RJ-MCMC
• Reversible-Jump MCMC (RJ-MCMC) is needed when the

dimension of continuous parameters will change from one
iteration of the MCMC to the next.

• A seminal paper by Peter Green† derives the appropriate
acceptance probability as

– = min
;

1,
fi(◊Õ)q(◊Õ æ ◊)

fi(◊)q(◊ æ ◊Õ)q(u)

ˆ◊Õ

ˆ(◊, u)

<
.

• Here, u is the augmentation of the continuous parameters of
the existing state to match dimensions with the proposed state
after a birth.

• The expression at the right denotes the determinant of the
Jacobian matrix describing the deterministic maps between the
lower-dimensional (existing) state to the higher-dimensional
proposed state resulting from birth.

† P. J. Green: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination, Biometrika, vol.82, pp.711–732 (1995).

Draw T |◊, Z

• In TGP, the authors use simple maps for the
dimension-changing moves so that the determinant of the
Jacobian matrix is 1.

• For example, in birth, one child node is randomly selected to
have the d‹ , g‹ ’s from the parent node and the other child
node randomly draws these parameters from the prior.

• A similar approach applies for death proposals.

Draw T |◊, Z

• In TGP, the authors use simple maps for the
dimension-changing moves so that the determinant of the
Jacobian matrix is 1.

• For example, in birth, one child node is randomly selected to
have the d‹ , g‹ ’s from the parent node and the other child
node randomly draws these parameters from the prior.

• A similar approach applies for death proposals.

Draw T |◊, Z

• In TGP, the authors use simple maps for the
dimension-changing moves so that the determinant of the
Jacobian matrix is 1.

• For example, in birth, one child node is randomly selected to
have the d‹ , g‹ ’s from the parent node and the other child
node randomly draws these parameters from the prior.

• A similar approach applies for death proposals.

Draw T |◊, Z

• The resulting MH ratio for birth is calculated as

|G|
|P|

fi(÷ splits)pi(÷(l) terminal)fi(÷(r) terminal)
fi(÷ terminal)

◊
fi(K(l)|Z(l)—0·2

(l), W)fi(K(r)|Z(r)—0·2

(r)
, W)

fi(K‹ |Z‹—0·2
‹ , W)

where fi(÷ splits) = a(1 + d÷)≠b and |P| is the number of
nodes in T where a death proposal can occur and |G| is the
number of nodes where a birth proposal can occur.

Prediction

• Similar to earlier, first write down the (conditional) predictive
distribution, then marginalize with respect to the posterior to
arrive at the posterior predictive.

• The conditional distribution at a new input x mapping to
terminal node ‹ is Normal with mean

E [Z (x)|·, x œ ‹] = fT (x)—̃‹ + k‹(x)T K≠1

‹ (Z‹ ≠ F‹—̃‹)

and variance

Var(Z (x)|·, x œ ‹) = ‡2

‹

1
k‹(x, x) ≠ qT

‹ (x)C≠1

‹ q‹(x)
2

where C≠1
‹ = (K‹ + ·2

‹ F‹WFT
‹)≠1,

q‹(x) = k‹(x) + ·2
‹ F‹W‹f(x) and

k‹(x, xÕ) = K‹(x, xÕ) + ·2
‹ fT (x)Wf (xÕ).

Prediction

• Similar to earlier, first write down the (conditional) predictive
distribution, then marginalize with respect to the posterior to
arrive at the posterior predictive.

• The conditional distribution at a new input x mapping to
terminal node ‹ is Normal with mean

E [Z (x)|·, x œ ‹] = fT (x)—̃‹ + k‹(x)T K≠1

‹ (Z‹ ≠ F‹—̃‹)

and variance

Var(Z (x)|·, x œ ‹) = ‡2

‹

1
k‹(x, x) ≠ qT

‹ (x)C≠1

‹ q‹(x)
2

where C≠1
‹ = (K‹ + ·2

‹ F‹WFT
‹)≠1,

q‹(x) = k‹(x) + ·2
‹ F‹W‹f(x) and

k‹(x, xÕ) = K‹(x, xÕ) + ·2
‹ fT (x)Wf (xÕ).

Software

• The model is available in the R package tgp on CRAN. Lots of
built-in demos.

• There is also a vignette and publication in JSS describing more
practical aspects.

• Among other things, the software can take advantage of the
tree-induced conditional independence to sample the ◊‹ |T , Z
in parallel.

• Although conditional on a tree the model will have sharp
discontinuities at the splits, posterior averaging tends to
smooth these out.

• An advantage of this model is the ability to model
heteroscedasticity and non-stationarity to some degree. Some
also use this model as a means for learning where in predictor
space the behaviour of a response changes.

Software

• The model is available in the R package tgp on CRAN. Lots of
built-in demos.

• There is also a vignette and publication in JSS describing more
practical aspects.

• Among other things, the software can take advantage of the
tree-induced conditional independence to sample the ◊‹ |T , Z
in parallel.

• Although conditional on a tree the model will have sharp
discontinuities at the splits, posterior averaging tends to
smooth these out.

• An advantage of this model is the ability to model
heteroscedasticity and non-stationarity to some degree. Some
also use this model as a means for learning where in predictor
space the behaviour of a response changes.

Software

• The model is available in the R package tgp on CRAN. Lots of
built-in demos.

• There is also a vignette and publication in JSS describing more
practical aspects.

• Among other things, the software can take advantage of the
tree-induced conditional independence to sample the ◊‹ |T , Z
in parallel.

• Although conditional on a tree the model will have sharp
discontinuities at the splits, posterior averaging tends to
smooth these out.

• An advantage of this model is the ability to model
heteroscedasticity and non-stationarity to some degree. Some
also use this model as a means for learning where in predictor
space the behaviour of a response changes.

Software

• The model is available in the R package tgp on CRAN. Lots of
built-in demos.

• There is also a vignette and publication in JSS describing more
practical aspects.

• Among other things, the software can take advantage of the
tree-induced conditional independence to sample the ◊‹ |T , Z
in parallel.

• Although conditional on a tree the model will have sharp
discontinuities at the splits, posterior averaging tends to
smooth these out.

• An advantage of this model is the ability to model
heteroscedasticity and non-stationarity to some degree. Some
also use this model as a means for learning where in predictor
space the behaviour of a response changes.

Software

• The model is available in the R package tgp on CRAN. Lots of
built-in demos.

• There is also a vignette and publication in JSS describing more
practical aspects.

• Among other things, the software can take advantage of the
tree-induced conditional independence to sample the ◊‹ |T , Z
in parallel.

• Although conditional on a tree the model will have sharp
discontinuities at the splits, posterior averaging tends to
smooth these out.

• An advantage of this model is the ability to model
heteroscedasticity and non-stationarity to some degree. Some
also use this model as a means for learning where in predictor
space the behaviour of a response changes. •

Example

library(tgp)

demo(package="tgp")

Example

• Main function is btgp(). Lets look at the moto data.

set.seed(88)

library(MASS)

X=data.frame(times=mcycle[,1])

Z=data.frame(accel=mcycle[,2])

fit.gp=bgp(X=X,Z=Z,verb=0) # Regular GP fit (no tree)

fit.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0) # Treed GP

Example

Plot both fits (posterior mean predictions) side by side

par(mfrow=c(1,2))

plot(fit.gp,layout=�surf�)

plot(fit.tgp,layout=�surf�)

Example

10 20 30 40 50

−1
00

−5
0

0
50

 accel mean

times

ac
ce
l

10 20 30 40 50

−1
00

−5
0

0
50

 accel mean

times

ac
ce
l

Example
Model details:

str(fit.tgp)

List of 31

$ X :�data.frame�: 133 obs. of 1 variable:

..$ times: num [1:133] 2.4 2.6 3.2 3.6 4 6.2 6.6 6.8 7.8 8.2 ...

$ n : int 133

$ d : int 1

$ Z : num [1:133] 0 -1.3 -2.7 0 -2.7 -2.7 -2.7 -1.3 -2.7 -2.7 ...

$ nn : int 0

$ Xsplit :�data.frame�: 133 obs. of 1 variable:

..$ times: num [1:133] 2.4 2.6 3.2 3.6 4 6.2 6.6 6.8 7.8 8.2 ...

$ BTE : int [1:3] 2000 7000 2

$ R : int 1

$ linburn : logi FALSE

$ g : int [1:2] 0 0

$ dparams : num [1:45] 0.5 2 10 1 1 0 0 0 0 1 ...

$ itemps :List of 5

..$ c0n0 : int [1:2] 0 0

..$ k : num 1

..$ pk : num 1

..$ counts: int 0

..$ lambda: chr "opt"

$ bimprov : int 0

$ Zp.mean : num [1:133] -1.32 -1.38 -1.58 -1.62 -1.75 ...

$ Zp.km : num [1:133] -1.37 -1.42 -1.56 -1.64 -1.73 ...

$ Zp.vark : num [1:133] 0.04625 0.03815 0.02037 0.01288 0.00806 ...

$ Zp.q : num [1:133] 5.13 4.99 4.98 5.04 4.85 ...

$ Zp.s2 : num [1:133] 2.48 2.41 2.21 2.37 2.3 ...

$ Zp.ks2 : num [1:133] 2.36 2.36 2.36 2.36 2.36 ...

$ Zp.q1 : num [1:133] -3.86 -3.84 -4.09 -4.11 -4.13 ...

$ Zp.med : num [1:133] -1.32 -1.4 -1.58 -1.65 -1.77 ...

$ Zp.q2 : num [1:133] 1.271 1.147 0.895 0.931 0.727 ...

$ ess : num 2500

$ gpcs :�data.frame�: 1 obs. of 4 variables:

..$ grow : num 0.032

..$ prune : num 0.0276

..$ change: num 0.385

..$ swap : num 1

$ response: chr "accel"

$ improv :�data.frame�: 0 obs. of 1 variable:

..$ rank: int(0)

$ parts : num [1:12, 1] 2.4 13.8 104 102 13.8 39.4 105 102 39.4 57.6 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr "V1"

$ trees :List of 3

..$: NULL

..$:�data.frame�: 3 obs. of 23 variables:

.. ..$ rows : int [1:3] 1 2 3

.. ..$ var : Factor w/ 2 levels "<leaf>","0": 2 1 1

.. ..$ n : int [1:3] 133 21 112

.. ..$ dev : int [1:3] 0 0 0

.. ..$ yval : num [1:3] 1 0.011 0.0265

.. ..$ splits.cutleft : Factor w/ 2 levels "","<13.8 ": 2 1 1

.. ..$ splits.cutright: Factor w/ 2 levels "",">13.8 ": 2 1 1

.. ..$ val : num [1:3] 13.8 0 0

.. ..$ lambda : num [1:3] 11.74 0.18 2.82

.. ..$ s2 : num [1:3] 1 0.011 0.0265

.. ..$ tau2 : num [1:3] 0.000837 0.000465 0.000596

.. ..$ beta0 : num [1:3] 0 -0.018 -0.0201

.. ..$ beta1 : num [1:3] 0 0.125 0.127

.. ..$ bmu0 : num [1:3] -0.044 -0.0216 -0.0218

.. ..$ bmu1 : num [1:3] 0.0692 0.1274 0.1275

.. ..$ Vb0.0 : num [1:3] 0.00205 0.00141 0.00179

.. ..$ Vb0.1 : num [1:3] -0.000791 -0.000104 -0.000138

.. ..$ Vb1.0 : num [1:3] -0.000791 -0.000104 -0.000138

.. ..$ Vb1.1 : num [1:3] 0.001572 0.000888 0.001135

.. ..$ nug : num [1:3] 0.50363 0.00651 0.56541

.. ..$ d1 : num [1:3] 0.83931 0.78773 0.00981

.. ..$ b1 : num [1:3] 1 1 1

.. ..$ ldetK : num [1:3] -81.2 -94 -37

..$:�data.frame�: 5 obs. of 23 variables:

.. ..$ rows : int [1:5] 1 2 3 6 7

.. ..$ var : Factor w/ 2 levels "<leaf>","0": 2 1 2 1 1

.. ..$ n : int [1:5] 133 21 112 90 22

.. ..$ dev : int [1:5] 0 0 0 0 0

.. ..$ yval : num [1:5] 1 0.0047 1 0.0415 0.0112

.. ..$ splits.cutleft : Factor w/ 3 levels "","<13.8 ","<39.4 ": 2 1 3 1 1

.. ..$ splits.cutright: Factor w/ 3 levels "",">13.8 ",">39.4 ": 2 1 3 1 1

.. ..$ val : num [1:5] 13.8 0 39.4 0 0

.. ..$ lambda : num [1:5] 871.905 0.111 0 3.749 0.298

.. ..$ s2 : num [1:5] 1 0.00473 1 0.04151 0.01123

.. ..$ tau2 : num [1:5] 0.001122 0.000683 1 0.001045 0.000766

.. ..$ beta0 : num [1:5] 0 0.0635 0 0.0549 0.0514

.. ..$ beta1 : num [1:5] 0 0.168 0 0.159 0.167

.. ..$ bmu0 : num [1:5] 0.1526 0.0576 0 0.0525 0.0566

.. ..$ bmu1 : num [1:5] 0.104 0.164 0 0.162 0.164

.. ..$ Vb0.0 : num [1:5] 0.00177 0.00701 1 0.01027 0.00781

.. ..$ Vb0.1 : num [1:5] 0.000618 0.001854 0 0.002675 0.002052

.. ..$ Vb1.0 : num [1:5] 0.000618 0.001854 0 0.002675 0.002052

.. ..$ Vb1.1 : num [1:5] 0.00203 0.00198 1 0.00298 0.00221

.. ..$ nug : num [1:5] 0.00443 0.01063 0.1 0.38281 0.37145

.. ..$ d1 : num [1:5] 0.99347 0.98274 0.5 0.00637 0.13464

.. ..$ b1 : num [1:5] 1 1 1 1 1

.. ..$ ldetK : num [1:5] -569.4 -85 0 -62.3 -15.5

$ posts :�data.frame�: 2 obs. of 20 variables:

..$ height : int [1:2] 2 3

..$ lpost : num [1:2] 133 158

..$ s2.a0 : num [1:2] 3.19 2.4

..$ s2.g0 : num [1:2] 0.0505 0.0151

..$ tau2.a0: num [1:2] 12.6 18.5

..$ tau2.g0: num [1:2] 0.00737 0.01655

..$ beta0 : num [1:2] -0.0218 0.0573

..$ beta1 : num [1:2] 0.127 0.164

..$ Ti0.0 : num [1:2] 0.332 0.129

..$ Ti0.1 : num [1:2] 0.0389 -0.1212

..$ Ti1.0 : num [1:2] 0.0389 -0.1212

..$ Ti1.1 : num [1:2] 0.528 0.458

..$ d0.a0 : num [1:2] 1 1

..$ d0.g0 : num [1:2] 20 20

..$ d0.a1 : num [1:2] 10 10

..$ d0.g1 : num [1:2] 10 10

..$ nug.a0 : num [1:2] 1 1

..$ nug.g0 : num [1:2] 1 1

..$ nug.a1 : num [1:2] 1 1

..$ nug.g1 : num [1:2] 1 1

$ params :List of 22

..$ tree : num [1:5] 0.5 2 10 1 1

..$ col : num 2

..$ meanfn : chr "linear"

..$ bprior : chr "b0"

..$ beta : num [1:2] 0 0

..$ Wi : num [1:2, 1:2] 1 0 0 1

..$ s2tau2 : num [1:2] 1 1

..$ s2.p : num [1:2] 5 10

..$ s2.lam : num [1:2] 0.2 10

..$ tau2.p : num [1:2] 5 10

..$ tau2.lam: num [1:2] 0.2 0.1

..$ corr : chr "expsep"

..$ gd : num [1:2] 0.1 0.5

..$ nug.p : num [1:4] 1 1 1 1

..$ nug.lam : chr "fixed"

..$ gamma : num [1:3] 0 0.2 0.7

..$ d.p : num [1:4] 1 20 10 10

..$ delta.p : NULL

..$ nugf.p : NULL

..$ d.lam : chr "fixed"

..$ dp.sim : num [1, 1] 0.2

..$ nu : NULL

$ m0r1 : logi TRUE

- attr(*, "class")= chr "tgp"

Example

By default samples are not saved from the posterior,

only the posterior quantities we want are recorded.

Use trace=TRUE to save more information.

However, storage may be an issue.

fit2.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0,trace=TRUE)

par(mfrow=c(1,2))

plot(fit2.tgp$trace$hier$s2.a0,type=�l�)

plot(fit2.tgp$trace$preds$Zp.ks2$XX1,type=�l�)

Example

0 500 1000 1500 2000 2500

2
4

6
8

10

Index

fit
2.
tg
p$
tra
ce
$h
ie
r$
s2
.a
0

0 500 1000 1500 2000 25000.
00
00
0

0.
00
01
0

0.
00
02
0

0.
00
03
0

Index

fit
2.
tg
p$
tra
ce
$p
re
ds
$Z
p.
ks
2$
XX

1

Example

Run for more iterations.

BTE=(burn,total,every)

Default is BTE=(2000,7000,2)

fit3.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0,trace=TRUE,BTE=c(7000,12000,2))

par(mfrow=c(1,2))

plot(fit3.tgp$trace$hier$s2.a0,type=�l�)

plot(fit3.tgp$trace$preds$Zp.ks2$XX1,type=�l�)

Example

0 500 1000 1500 2000 2500

5
10

15
20

25

Index

fit
3.
tg
p$
tra
ce
$h
ie
r$
s2
.a
0

0 500 1000 1500 2000 2500

0.
00
00
5

0.
00
01
0

0.
00
01
5

0.
00
02
0

0.
00
02
5

Index

fit
3.
tg
p$
tra
ce
$p
re
ds
$Z
p.
ks
2$
XX

1

Example

• What happens if we try our stationary example from earlier?

set.seed(88)

x=seq(0,1,length=10)

D=abs(outer(x,x,"-"))

R=0.001^(D^2)

L=t(chol(R))

Z=L%*%rnorm(10)

X=data.frame(x)

Z=data.frame(Z)

plot(X,Z,pch=20,col="red",xlab="X",ylab="Response")

Example

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

X

R
es
po
ns
e

Example

fit.gp=bgp(X=X,Z=Z,verb=0) # Regular GP fit (no tree)

fit.tgp=btgp(X=X,Z=Z,bprior="b0",verb=0) # Treed GP

Plot both fits (posterior mean predictions) side by side

par(mfrow=c(1,2))

plot(fit.gp,layout=�surf�)

plot(fit.tgp,layout=�surf�)

Example

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

 Z mean

x

Z

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

 Z mean

x

Z

