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Today

Combining Theoretical Models
and Observational Data

in a Probabilistic Framework
for Inference and Prediction.



Computer Model Calibration Experiments (CMCE’s)

• A non-intrusive approach to combining simulator outputs,
η(x, t) and observational (“field”) data.

• Usually our simulator is expensive, so we have limited outputs
we can run.

• And field data, y f (x) may be even more expensive, or otherwise
difficult to obtain. Therefore, even fewer field observations.

• Here x are our usual control input variables as we saw when
emulating. These are inputs that are also present for the
observational data.



Computer Model Calibration Experiments (CMCE’s)

• Simulators also typically depend on additional parameters, t.
• e.g. gravity in our ball-drop experiment
• e.g. combustion parameter in our CO2 emissions problem.

• The simulator is linked to the real-world process through these
unknown parameters, called {calibration parameters}.

• Goal is to estimate t̂ = θ, the parameter setting correponding
to the real-world process.

• And predict the field process, y f (x) at new settings of x,
quantify uncertainties, etc.

• What if the simulator model is wrong? We can possibly
estimate this discrepancy between the simulator and reality,
called δ(x), as well.



CMCE Model†

• Our model for the field observations is

y f (xi) = η(xi ,θ) + δ(xi) + ε(xi), i = 1, . . . , n

where ε(xi) ∼ N(0, λ−1
f ), δ(xi) accounts for the discrepancy

between the simulator and reality and θ denotes the “true”(or best
in some sense) setting of the calibration parameter t.

† M.A. Kennedy and T. O’Hagan: {Bayesian Calibration of Computer Models (with
discussion)}, Journal of the Royal Statistical Society, Series B, vol.68, pp.425–464
(2001).



CMCE Model, no discrepancy (δ(x) = 0).
• Besides our model for the observations, we also need a model

for the simulator outputs.
• Since the simulator is slow, we will have to emulate it.

• We have field data,

yf = (y f (x1), . . . , y f (xn))T

• And simulator output,

yc = (y c(x1, t1), . . . , xm, tm)T

• With no discrepancy, our model for the field is

y f (xi) = η(xi ,θ) + εi

and our model for the simulator is

y c(xi , ti) = η(xi , ti)



CMCE Model, no discrepancy (δ(x) = 0).

• Use our usual emulator model for the simulator, a GP:

η(x, t) ∼ GP(µ(x, t), λ−1R(x, t; ρ))

where R(x, t; ρ) is formed as

cor(η(x, t), η(x′, t′)) =
d∏

i=1
c(x− x′)

k∏
j=1

c(t− t′)

for x ∈ Rd and t ∈ Rk .
• A typical choice for the correlation function c() will be the

Gaussian.



CMCE Model, no discrepancy (δ(x) = 0).

• This gives us our model (and correspondingly the likelihood)
for the field and simulator data,

(
yf
yc

)
∼ N

((
µ(x,θ)
µ(x, t)

)
, λ−1

[
Rff Rfc

Rcf Rcc

]
+
[
λ−1
f I 0
0 0

])

Here, Rff denotes the correlation elements between field
observations, Rcc the correlation between simulator outputs and Rfc

the cross-correlation between field observations and simulator
outputs.



CMCE Model, no discrepancy (δ(x) = 0).
• For simplicity let’s take mu(x, t) = 0.
• Specifying priors on the parameters ρ, λ, λf and the calibration

parameters θ we have

π(θ, λ, λf ,ρ|yf , yc) ∝ L(·|yf , yc)π(λ)π(λf )
k∏

i=1
π(θi)

d+k∏
j=1

π(ρj)

• Taking the same approach as our Bayesian GP regression
model,

π(λ) = Gamma(a, b)
π(λf ) = Gamma(af , bf )
π(ρj) = Beta(αj , βj)

• And we also need a prior on the calibration parameters,

π(θi) = Unif(0, 1)

(assuming the inputs are scaled to the unit hypercube).



CMCE Model, no discrepancy (δ(x) = 0).

• What does this model do? Consider predicting the field process
at a new location ${x}ˆ* (for a given θ).

• Let cT =
(cov(y f (x∗), y f (x1)), . . . , cov(y f (x∗), y f (xn)), cov(y f (x∗), y c(x1)), . . . , cov(y f (x∗), y c(xm)))

• Or in short-hand, cT = (cf , cc)T .
• Then the mean of the conditional predictive distribution

is

E [y f (x∗)|yf , yc , ·] = cTΣ−1(yf , yc)T

=
...

=
n∑

i=1
w f
i (θ)y f (xi) +

m∑
j=1

w c
j (θ)y c(xj , tj)



CMCE Model, no discrepancy (δ(x) = 0).
• This shows that the field process is predicted as a weighted

combination of the field observations and simulator output.
• The role of the estimated calibration parameter, θ, comes

through the cross-covariance terms, cc and Σcf which both
depend on θ.

• If the estimated θ indicates the field data is “far” from the
simulator output, i.e. |θj − tj | is large ∀j , then these correlation
components will be small and the field prediction is mainly
based on the field observations.

• In extreme case of cc = 0 and Σcf = 0 we get
E [y f (x∗)] = cf TΣf −1yf , the usual GP predictor.

• If the estimate of θ is poor, the prediction of the field process
may be inappropriately influenced by the simulator outputs if
they receive too much weight – i.e. model things the outputs
and field are “closer” than the actually are.



CMCE Model, with discrepancy
• Popular form of discrepancy is to assume an additive

discrepancy,

y f (xi) = η(xi ,θ) + δ(xi) + εi

• Naturally, we will model the discrepancy, δ = (δ(xi), . . . , δ(xn))
also as a GP,

δ ∼ N
(
µδ(x), λ−1

δ Rδ(x; φ)
)

• Assuming η, δ and ε are independent, the likelihood becomes(
yf
yc

)
∼ N

((
µ(x,θ) + µδ(x)

µ(x, t)

)
,Σ
)

where

Σ = λ−1
[
Rff Rfc

Rcf Rcc

]
+
[
λ−1

δ Rδ 0
0 0

]
+
[
λ−1
f I 0
0 0

]



MCMC Algorithm

• Similar to the one we developed for the Bayesian GP regression
model.

• Except now we have a lot of parameters requiring
Metropolis-Hastings steps.

• And we also need to sample the θ’s (MH as well).



Prediction and Inference

• We are typically interested in:
• the emulated calibrated simulator, E [η(x,θ)|yf , yc ]
• the predicted discrepancy, E [δ(x)|yf , yc ]
• the predicted field process, E [η(x,θ) + δ(x)|yf , yc ]
• the estimated calibration parameter, E [θ|yf , yc ]

• And of course uncertainties in the above.
• There are other forms of discrepancy that have been

considered, such as multiplicative and more complex forms, but
these are generally less common.


