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Today

Combining Theoretical Models
and Observational Data

in a Probabilistic Framework

for Inference and Prediction.



Computer Model Calibration Experiments (CMCE’s)

= A non-intrusive approach to combining simulator outputs,
n(x,t) and observational (“field") data.

= Usually our simulator is expensive, so we have limited outputs
we can run.

= And field data, yf(x) may be even more expensive, or otherwise
difficult to obtain. Therefore, even fewer field observations.

= Here x are our usual control input variables as we saw when
emulating. These are inputs that are also present for the
observational data.



Computer Model Calibration Experiments (CMCE’s)

= Simulators also typically depend on additional parameters, t.

= e.g. gravity in our ball-drop experiment
= e.g. combustion parameter in our CO2 emissions problem.

= The simulator is linked to the real-world process through these
unknown parameters, called {calibration parameters}.

= Goal is to estimate t = 0, the parameter setting correponding
to the real-world process.

= And predict the field process, yf(x) at new settings of x,
quantify uncertainties, etc.
= What if the simulator model is wrong? We can possibly

estimate this discrepancy between the simulator and reality,
called 6(x), as well.



CMCE Modelf}

= Qur model for the field observations is
yf(x,-) =n(x;,0) + d(x;) +€(x;), i=1,...,n

where €(x;) ~ N(0, A7 1), 6(x;) accounts for the discrepancy
between the simulator and reality and € denotes the “true”(or best
in some sense) setting of the calibration parameter t.

t M.A. Kennedy and T. O'Hagan: {Bayesian Calibration of Computer Models (with
discussion)}, Journal of the Royal Statistical Society, Series B, vol.68, pp.425-464
(2001).



CMCE Model, no discrepancy (J(x) = 0).

Besides our model for the observations, we also need a model
for the simulator outputs.

= Since the simulator is slow, we will have to emulate it.

We have field data,

And simulator output,

c T

Yo = (y(x1,t1), .- s Xm, tm)

With no discrepancy, our model for the field is
v (xi) = n(xi,0) + i

and our model for the simulator is

y(xi, t;) = n(xi, t;)



CMCE Model, no discrepancy (J(x) = 0).

= Use our usual emulator model for the simulator, a GP:
n(x, t) ~ GP(u(x, t), \"'R(x, t; p))

where R(x, t; p) is formed as

d k

cor(n(x, t),n(x',t')) = H c(x —x) H c(t—t)

for x € R? and t € RX.

= A typical choice for the correlation function ¢() will be the
Gaussian.



CMCE Model, no discrepancy (J(x) = 0).

= This gives us our model (and correspondingly the likelihood)
for the field and simulator data,
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Here, R denotes the correlation elements between field
observations, R¢¢ the correlation between simulator outputs and Rfc
the cross-correlation between field observations and simulator

outputs.



CMCE Model, no discrepancy (J(x) = 0).

For simplicity let's take mu(x,t) = 0.
Specifying priors on the parameters p, A, A¢ and the calibration
parameters 6@ we have
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Taking the same approach as our Bayesian GP regression
model,
m(A) = Gamma(a, b)

7(A") = Gamma(ay, by)
7(p;) = Beta(ey, )
And we also need a prior on the calibration parameters,
m(0;) = Unif(0,1)

(assuming the inputs are scaled to the unit hypercube).



CMCE Model, no discrepancy (J(x) = 0).

What does this model do? Consider predicting the field process
at a new location ${x}"* (for a given 0).

Let ¢’ =
(cov(y"(x*),y(x1)),- .., cov(y’ (x*), y" (xn)), cov(y”(x*), y*(x1)), .-
Or in short-hand, ¢’ = (cf,c)’.

Then the mean of the conditional predictive distribution
is

Ely (x)ly",ye] = =My y)"



CMCE Model, no discrepancy (J(x) = 0).

This shows that the field process is predicted as a weighted
combination of the field observations and simulator output.

The role of the estimated calibration parameter, 8, comes
through the cross-covariance terms, ¢¢ and Y <f which both
depend on 6.

If the estimated @ indicates the field data is “far” from the
simulator output, i.e. |§; — t;| is large Vj, then these correlation
components will be small and the field prediction is mainly
based on the field observations.

= In extreme case of c© = 0 and X = 0 we get
E[y(x*)] = ¢/ "= 'y, the usual GP predictor.

If the estimate of @ is poor, the prediction of the field process
may be inappropriately influenced by the simulator outputs if
they receive too much weight — i.e. model things the outputs
and field are “closer” than the actually are.



CMCE Model, with discrepancy

= Popular form of discrepancy is to assume an additive
discrepancy,

yi(xi) = n(xi,8) + 3(x;) + €

= Naturally, we will model the discrepancy, & = (J(x;), ..., (xn))
also as a GP,

d~N (Ma(x),AglRa(X; ¢))

= Assuming 7, and e are independent, the likelihood becomes
f
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MCMC Algorithm

Similar to the one we developed for the Bayesian GP regression
model.

Except now we have a lot of parameters requiring
Metropolis-Hastings steps.

And we also need to sample the 8's (MH as well).



Prediction and Inference

We are typically interested in:
= the emulated calibrated simulator, E[n(x, 8)|y’, y°]
= the predicted discrepancy, E[6(x)|y,y¢]
= the predicted field process, E[n(x,8) + §(x)|y’, y°]
= the estimated calibration parameter, E[0]y’, y]

And of course uncertainties in the above.

There are other forms of discrepancy that have been
considered, such as multiplicative and more complex forms, but
these are generally less common.



