Calibration STAT8810, Fall 2017

M.T. Pratola

November 29, 2017

Today

Combining Theoretical Models and Observational Data in a Probabilistic Framework for Inference and Prediction.

Computer Model Calibration Experiments (CMCE's)

- A non-intrusive approach to combining simulator outputs, $\eta(\mathbf{x}, \mathbf{t})$ and observational ("field") data.
- Usually our simulator is expensive, so we have limited outputs we can run.
- And field data, y^f(x) may be even more expensive, or otherwise difficult to obtain. Therefore, even fewer field observations.
- Here x are our usual control input variables as we saw when emulating. These are inputs that are also present for the observational data.

Computer Model Calibration Experiments (CMCE's)

- Simulators also typically depend on additional parameters, t.
 - e.g. gravity in our ball-drop experiment
 - e.g. combustion parameter in our CO2 emissions problem.
- The simulator is linked to the real-world process through these unknown parameters, called {*calibration parameters*}.
- Goal is to estimate $\hat{t} = \theta$, the parameter setting correponding to the real-world process.
- And predict the field process, y^f(x) at new settings of x, quantify uncertainties, etc.
- What if the simulator model is wrong? We can possibly estimate this discrepancy between the simulator and reality, called δ(x), as well.

CMCE Model†

Our model for the field observations is

$$y^{f}(\mathbf{x}_{i}) = \eta(\mathbf{x}_{i}, \boldsymbol{\theta}) + \delta(\mathbf{x}_{i}) + \epsilon(\mathbf{x}_{i}), \quad i = 1, \dots, n$$

where $\epsilon(\mathbf{x}_i) \sim N(0, \lambda_f^{-1})$, $\delta(\mathbf{x}_i)$ accounts for the discrepancy between the simulator and reality and $\boldsymbol{\theta}$ denotes the "true" (or best in some sense) setting of the calibration parameter **t**.

† M.A. Kennedy and T. O'Hagan: {*Bayesian Calibration of Computer Models (with discussion)*}, *Journal of the Royal Statistical Society, Series B, vol.68, pp.425–464 (2001).*

- Besides our model for the observations, we also need a model for the simulator outputs.
 - Since the simulator is slow, we will have to emulate it.
- We have field data,

$$\mathbf{y}^f = (y^f(\mathbf{x}_1), \dots, y^f(\mathbf{x}_n))^T$$

And simulator output,

$$\mathbf{y}^{c} = (y^{c}(\mathbf{x}_{1}, \mathbf{t}_{1}), \dots, \mathbf{x}_{m}, \mathbf{t}_{m})^{T}$$

• With no discrepancy, our model for the field is

$$y^{f}(\mathbf{x}_{i}) = \eta(\mathbf{x}_{i}, \boldsymbol{\theta}) + \epsilon_{i}$$

and our model for the simulator is

$$y^{c}(\mathbf{x}_{i},\mathbf{t}_{i}) = \eta(\mathbf{x}_{i},\mathbf{t}_{i})$$

• Use our usual emulator model for the simulator, a GP:

$$\eta(\mathbf{x}, \mathbf{t}) \sim GP(\mu(\mathbf{x}, \mathbf{t}), \lambda^{-1} \mathbf{R}(\mathbf{x}, \mathbf{t}; \boldsymbol{
ho}))$$

where $\mathbf{R}(\mathbf{x}, \mathbf{t}; \boldsymbol{\rho})$ is formed as

$$\operatorname{cor}(\eta(\mathbf{x},\mathbf{t}),\eta(\mathbf{x}',\mathbf{t}')) = \prod_{i=1}^{d} c(\mathbf{x}-\mathbf{x}') \prod_{j=1}^{k} c(\mathbf{t}-\mathbf{t}')$$

for $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{t} \in \mathbb{R}^k$.

 A typical choice for the correlation function c() will be the Gaussian.

• This gives us our model (and correspondingly the likelihood) for the field and simulator data,

$$\left(\begin{array}{c} \mathbf{y}^{f} \\ \mathbf{y}^{c} \end{array} \right) \sim \mathcal{N} \left(\left(\begin{array}{c} \mu(\mathbf{x}, \boldsymbol{\theta}) \\ \mu(\mathbf{x}, \mathbf{t}) \end{array} \right), \lambda^{-1} \left[\begin{array}{cc} \mathbf{R}^{ff} & \mathbf{R}^{fc} \\ \mathbf{R}^{cf} & \mathbf{R}^{cc} \end{array} \right] + \left[\begin{array}{c} \lambda_{f}^{-1} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right] \right)$$

Here, \mathbf{R}^{ff} denotes the correlation elements between field observations, \mathbf{R}^{cc} the correlation between simulator outputs and \mathbf{R}^{fc} the cross-correlation between field observations and simulator outputs.

- For simplicity let's take $mu(\mathbf{x}, \mathbf{t}) = 0$.
- Specifying priors on the parameters *ρ*, λ, λ_f and the calibration parameters *θ* we have

$$\pi(\boldsymbol{\theta}, \lambda, \lambda_f, \boldsymbol{\rho} | \mathbf{y}^f, \mathbf{y}^c) \propto L(\cdot | \mathbf{y}^f, \mathbf{y}^c) \pi(\lambda) \pi(\lambda^f) \prod_{i=1}^k \pi(\theta_i) \prod_{j=1}^{d+k} \pi(\rho_j)$$

Taking the same approach as our Bayesian GP regression model,

$$\pi(\lambda) = \text{Gamma}(a, b)$$

 $\pi(\lambda^f) = \text{Gamma}(a_f, b_f)$
 $\pi(\rho_j) = \text{Beta}(\alpha_j, \beta_j)$

And we also need a prior on the calibration parameters,

$$\pi(heta_i) = \mathsf{Unif}(0,1)$$

(assuming the inputs are scaled to the unit hypercube).

- What does this model do? Consider predicting the field process at a new location \${x}^{*} (for a given θ).
- Let $\mathbf{c}^T = (\mathbf{cov}(y^f(\mathbf{x}^*), y^f(\mathbf{x}_1)), \dots, \mathbf{cov}(y^f(\mathbf{x}^*), y^f(\mathbf{x}_n)), \mathbf{cov}(y^f(\mathbf{x}^*), y^c(\mathbf{x}_1)), \dots$
- Or in short-hand, $\mathbf{c}^T = (\mathbf{c}^f, \mathbf{c}^c)^T$.
- Then the mean of the conditional predictive distribution is

$$\begin{aligned} \boldsymbol{\Xi}[\boldsymbol{y}^{f}(\mathbf{x}^{*})|\mathbf{y}^{f},\mathbf{y}^{c},\cdot] &= \mathbf{c}^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{y}^{f},\mathbf{y}^{c})^{T} \\ &= \vdots \\ &= \sum_{i=1}^{n} w_{i}^{f}(\boldsymbol{\theta})\boldsymbol{y}^{f}(\mathbf{x}_{i}) + \sum_{j=1}^{m} w_{j}^{c}(\boldsymbol{\theta})\boldsymbol{y}^{c}(\mathbf{x}_{j},\mathbf{t}_{j}) \end{aligned}$$

- This shows that the field process is predicted as a weighted combination of the field observations and simulator output.
- The role of the estimated calibration parameter, θ , comes through the cross-covariance terms, \mathbf{c}^c and Σ^{cf} which both depend on θ .
- If the estimated θ indicates the field data is "far" from the simulator output, i.e. |θ_j − t_j| is large ∀j, then these correlation components will be small and the field prediction is mainly based on the field observations.
 - In extreme case of c^c = 0 and Σ^{cf} = 0 we get
 E[y^f(x^{*})] = c^{f^T}Σ^{f⁻¹}y^f, the usual GP predictor.
- If the estimate of θ is poor, the prediction of the field process may be inappropriately influenced by the simulator outputs if they receive too much weight – i.e. model things the outputs and field are "closer" than the actually are.

CMCE Model, with discrepancy

Popular form of discrepancy is to assume an additive discrepancy,

$$y^{f}(\mathbf{x}_{i}) = \eta(\mathbf{x}_{i}, \boldsymbol{\theta}) + \delta(\mathbf{x}_{i}) + \epsilon_{i}$$

• Naturally, we will model the discrepancy, $\boldsymbol{\delta} = (\delta(\mathbf{x}_i), \dots, \delta(\mathbf{x}_n))$ also as a GP,

$$\boldsymbol{\delta} \sim \mathcal{N}\left(\mu_{\delta}(\mathbf{x}), \lambda_{\delta}^{-1} \mathbf{R}_{\delta}(\mathbf{x}; \boldsymbol{\phi})
ight)$$

- Assuming η, δ and ϵ are independent, the likelihood becomes

$$\left(\begin{array}{c} \mathbf{y}^{f} \\ \mathbf{y}^{c} \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} \mu(\mathbf{x}, \boldsymbol{\theta}) + \mu_{\delta}(\mathbf{x}) \\ \mu(\mathbf{x}, \mathbf{t}) \end{array}\right), \boldsymbol{\Sigma}\right)$$

where

$$\Sigma = \lambda^{-1} \begin{bmatrix} \mathbf{R}^{ff} & \mathbf{R}^{fc} \\ \mathbf{R}^{cf} & \mathbf{R}^{cc} \end{bmatrix} + \begin{bmatrix} \lambda_{\delta}^{-1} \mathbf{R}_{\delta} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \lambda_{f}^{-1} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

MCMC Algorithm

- Similar to the one we developed for the Bayesian GP regression model.
- Except now we have a lot of parameters requiring Metropolis-Hastings steps.
- And we also need to sample the θ 's (MH as well).

Prediction and Inference

- We are typically interested in:
 - the emulated calibrated simulator, $E[\eta(\mathbf{x}, \boldsymbol{\theta}) | \mathbf{y}^{f}, \mathbf{y}^{c}]$
 - the predicted discrepancy, $E[\delta(\mathbf{x})|\mathbf{y}^f,\mathbf{y}^c]$
 - the predicted field process, $E[\eta(\mathbf{x}, \boldsymbol{\theta}) + \delta(\mathbf{x}) | \mathbf{y}^{f}, \mathbf{y}^{c}]$
 - the estimated calibration parameter, $E[\theta|\mathbf{y}^f,\mathbf{y}^c]$
- And of course uncertainties in the above.
- There are other forms of discrepancy that have been considered, such as multiplicative and more complex forms, but these are generally less common.