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More on GP Regression



The Empirical Variogram

• How do we know if a correlation model is “good” for our data?

• Suppose {Y (s) : s œ D µ Rd} is a real-valued process on a
domain D of d-dimensional Euclidean space, and suppose that
di�erences of variables displaced by h apart depend only on h.
That is,

Var(Y (x + h) ≠ Y (x)) = 2“
Y

(h)’x , x + h œ D.

• The quantity 2“
Y

(h) is a function of only the di�erence
between locations in D, and is called the variogram.

• A variogram written as a function of ||h|| is said to be isotropic.
Otherwise, it is anisotropic.
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Example

• The semi-variogram for the powered exponential model is

“
Y

(h; ◊) = c
Y

(0; ◊) ≠ c
Y

(h; ◊)

where c
Y

(h; ◊) = ‡2exp
1
≠ ||h||◊2

◊1

2
.

• The empirical semi-variogram is calculated as

“̂
Y

(h) = 1
2ave

Ó
(Z (x

i

) ≠ Z (x
j

))2 : ||x
i

≠ x
j

|| œ T (h), i , j = 1, . . . , n
Ô

where T (h) is some tolerance region around h (e.g. h ± �, for
� small).
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The Empirical Variogram

• How do we know if a correlation model is “good” for our data?

1. Eyeball test: compare the theoretical semivariogram (at various
◊’s or maybe ◊̂

MLE

) versus the empirical semivariogram.
2. Simple test of H0 : Z (·) has no spatial dependence.†

† Cressie & Wikle: Statistics for Spatial-Temporal Data (2011)
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Simple Test of Dependence

2. Let F = “̂
Y

(h1)
‡̂2 where ‡̂2 =

q
(Z(x

i

)≠µ̂)2

n≠1 , µ̂ = 1
n

q Z (x
i

) and h1
is the smallest lag from all possible lags h1, . . . , h

L

.

• Reject H0 for |F ≠ 1| large. How? Permutation-based test is
one distribution-free approach:

• i: Permute the data locations x‡(1), . . . , x‡(n)
• ii: Recompute F
• iii: Repeat steps i,ii many times
• iv: If the observed F is above the 97.5th percentile or below the

2.5th percentile of the permutation distribution, reject H0 at
the 5% level.

Note: this does not test the validity of the correlation model! Only
whether correlation is present or not.
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Simple Test of Dependence

3. A simulation approach:

• i: Draw independent unconditional realizations from the GP
with given correlation parameters.

• ii: Construct empirical variogram at same lags as observed
dataset for each GP draw.

• Repeat i,ii many times.
• Construct variogram “envelopes” from the draws† and see if the

observed empirical variogram of the dataset lie within the
envelope.

† Ribeiro, Paulo and Diggle: geoR: a package for geostatistical analysis (2001).
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Example

source("dace.sim.r")
#
# Generate a 2-D realization
#
set.seed(99) #remove for a "real" realization
library(rgl) #for nice plots
n=10
x1=x2=seq(0,1,length=n)
design=as.matrix(expand.grid(x1,x2))
l1=list(m1=abs(outer(design[,1],design[,1],"-")))
l2=list(m2=abs(outer(design[,2],design[,2],"-")))
l.dez=list(l1=l1,l2=l2)
rho=c(0.5,0.5)
alpha=2
s2=1
se2=0
z=sim.field(l.dez,rho,s2,se2=se2,alpha=alpha,

conditioning=1e-14)
persp3d(x1,x2,z,col="grey",xlab="x1",ylab="x2",zlab="GP draw",type=�h�)
points3d(design[,1],design[,2],z)



Example

Figure 1:



Example

library(geoR)

## --------------------------------------------------------------
## Analysis of Geostatistical Data
## For an Introduction to geoR go to http://www.leg.ufpr.br/geoR
## geoR version 1.7-5.2 (built on 2016-05-02) is now loaded
## --------------------------------------------------------------

gsim=cbind(design,z)
gsim=as.geodata(gsim)
vgram=variog(gsim)

## variog: computing omnidirectional variogram

eyefit(vgram) # Explore different models, etc.
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## cov.model sigmasq phi tausq kappa kappa2 practicalRange
## 1 cubic 0.08 1.14 0 <NA> <NA> 1.14



Example

Figure 2:



Example

# Construct envelope using permutation test.
vgram.env=variog.mc.env(gsim, obj.var = vgram)

## variog.env: generating 99 simulations by permutating data values
## variog.env: computing the empirical variogram for the 99 simulations
## variog.env: computing the envelops



Example

plot(vgram, envelope = vgram.env)
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Example

# Construct envelope by simulating from the model
vgram.ml=likfit(gsim, ini.cov.pars = c(2.5, 1),

cov.model="gaussian", fix.nugget = TRUE,
nugget=1e-10)

## kappa not used for the gaussian correlation function
## ---------------------------------------------------------------
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
## arguments for the maximisation function.
## For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
## times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## ---------------------------------------------------------------
## likfit: end of numerical maximisation.

vgram.env=variog.model.env(gsim, obj.v = vgram,
model.pars = vgram.ml,nsim=100,save.sim=TRUE)

## Warning in if (class(model.pars) == "eyefit") {: the condition has length >
## 1 and only the first element will be used

## variog.env: generating 100 simulations (with 100 points each) using the function grf
## variog.env: adding the mean or trend
## variog.env: computing the empirical variogram for the 100 simulations
## variog.env: computing the envelops



Example

plot(vgram, envelope = vgram.env)
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Example

# Instead of plotting max/min envelope, plot the 5%
# and 95% quantiles from the simulations
gtmp=gsim
nbins=length(vgram$u)
vgsims=matrix(0,nrow=100,ncol=nbins)
for(i in 1:100) {

gtmp$data=vgram.env$simulated.data[,i]
vg=variog(gtmp)
vgsims[i,]=vg$v

}

## variog: computing omnidirectional variogram
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Example

plot(vgram, envelope = vgram.env)
for(i in 1:nbins) points(vg$u[i],quantile(vgsims[,i],0.05),pch=20)
for(i in 1:nbins) points(vg$u[i],quantile(vgsims[,i],0.95),pch=20)

# Add in a line at the MLE estimate of the model
lines.variomodel(vg$u,cov.model="gaussian",

cov.pars=vgram.ml$cov.pars,nugget=1e-10)



Example
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Sample Properties of GP’s

• path-wise properties depend on behaviour of Z (x) = Z (x , Ê)
when Ê is fixed.

• process-wise properties given as usual specification of mean
and covariance.
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Continuity

Definition: Suppose Z (x) is a process with finite second moments.
Then, Z (·) is mean-square continuous at x0 if E [|Z (x)|2] < +Œ and

lim
xæx0E�

Ë
|Z (x) ≠ Z (x0)|)2

È
= 0.

Definition: Z (x) has almost surely continuous sample paths on ‰
provided

P (Ê : ’x0 œ ‰, z(x) æ z(x0) as x æ x0) = 1.

• this one is more abstract. It says that the only events that
occur with probability 1 are those where the sample path of the
process is continuous.



Continuity

• Let c
Y

(·) be the covariance function of a stationary process
Y (·). Then,

E
Ë
(Y (x) ≠ Y (x0))2

È
= E

Ë
Y 2(x) ≠ 2Y (x)Y (x0) + Y 2(x0)

È

= 2c
Y

(0) ≠ 2c
Y

(x ≠ x0)
= 2 (c

Y

(0) ≠ c
Y

(x ≠ x0))

So,
lim

xæx0E
Ë
(Y (x) ≠ Y (x0))2

È
= lim

xæx0cY

(0) ≠ c
Y

(x ≠ x0) = 0
… lim

xæx0cY

(x ≠ x0) = c
Y

(0)

i.e. the process is mean-square continuous ’x0 œ ‰ provided c
Y

(·) is
continuous at the origin. Or similarly, R(h) æ 1 as h æ 0 and R(h)
is continuous at origin.



Continuity

• For GP’s, mean-square continuity can be expressed as

E
Ë
|Z (x

i

) ≠ Z (x
j

)|2
È

æ 0 as ||x
j

≠ x
i

|| æ 0.†

• It has also been shown that the sample paths of a GP are
almost surely continuous if R(h) converges to 1 su�ciently
slow:

• ‡ If Z (·) is a stationary GRF with correlation function R
satisfying

1 ≠ R(h) Æ c
|log(||h||2)|1+‘

’||h||2 < ”

for some 0 < c < Œ, some ‘ > 0 and some ” < 1 then Z (·)
has a.s. continuous sample paths.

• In other words, (1 ≠ R(h))|log(||h||2)|1+‘ Æ c is bounded.

† Theorem 3.4.1 in Adler: The Geometry of Random Fields (1981).

‡ Pg. 60 in Adler: The Geometry of Random Fields (1981).
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Continuity

c=1
eps=4
h=seq(0,1,length=100)

# Bound from Adler, 1981
bound=c/( abs(log(h))^(1+eps) )

# Gaussian correlation with theta=1
Rh=exp(-h^2)

# Exponential correlation with theta=1
Rhe=exp(-abs(h))



Continuity

plot(h,bound,type=�l�,lwd=3,col="grey",ylim=c(0,1),xlab="h",ylab="1-R(H)")
lines(h,1-Rh,col="blue")
lines(h,1-Rhe,col="orange")
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Continuity

• For the Gaussian correlation model, R(h) = exp(≠◊h2), then
Z (·) is a.s. continuous and a.s. infinitely di�erentiable.

• For the Matern correlation model, Z (·) is a.s. continuous and
Â‹Ê times a.s. di�erentiable.

• For the cubic correlation model, Z (·) is a.s. continuous and 2
times di�erentiable.
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Correlation/Covariance of Derivative Processes

• E
Ë

ˆ
ˆx

i

Z (x)
È

= ˆ
ˆx

i

E [Z (x)]

• Cov
1

ˆ
ˆx

i

Z (x), Z (x Õ)
2

= ˆ
ˆx

i

Cov (Z (x), Z (x Õ)) = ˆ
ˆx

i

c(x ≠ x Õ).

• Cov
1

ˆ
ˆx

i

Z (x), ˆ
ˆx

j

Z (x Õ)
2

= ˆ2
ˆx

i

ˆx

j

Cov (Z (x), Z (x Õ)) =
ˆ2

ˆx

i

ˆx

j

c(x ≠ x Õ).
• Clearly we at least need c(·) to be twice di�erentiable to obtain

the correlation/covariance function of the derivative process.

Morris, Mitchell and Ylvisaker: Bayesian design and analysis of computer

experiments: use of derivatives in surface prediction (1993)
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Single-Path Inference

• Can we do inference form a single sample path to determine
the �-properties?

• Requires that correlation between points decays to zero as the
distance increases - ergodic property.

• if Z (·) is a stationary GP, then Z (·) is ergodic provided
C(h) æ 0 as ||h||2 æ Œ.†

† Blum: Ergodic Theorems. Entry in Encyclopedia of Statistical Sciences, Vol 2,

by S. Kotz and N.L. Johnson, eds., Wiley, NY pg. 541-545 (1982).
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Ergodicity

• Greek for “wandering”

• Put simply, allows expectations over �-space to be estimated
by averages over the covariates (e.g. space, time) from a single
realization.

• We’ll describe a simple motivating case for the Ergodic
Theorem†.

• Let T be a translation operator:

T ({Z (t)} : t = 1, 2, . . .) = {Y (t) : t = 1, 2, . . .}

where Y (t) = Z (t + 1).
• T k = T (T (. . .))

† Cressie: Statistics for Spatial Data (1993)
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Ergodicity

• Let A is a measureable set (e.g.
A = {z(·) : z(1) Æ z1, z(2) Æ z2, . . . , z(p) Æ z

p

}) and define
T ≠1(A) = {b : T (b) œ A}

• Then Z (·) is stationary i� P(T ≠1(A)) = P(A) for every
measurable set A. (e.g. just our usual translation-invariance in
our GP models).

• And Z (·) is ergodic if T ≠1(A) = A (i.e. A is invariant with
respect to time) implies P(A) = 0 or P(A) = 1.

• This means than the trajectories generated by this process
(almost) all belong to a single invariant set.

• For our time-indexed process analogy here, this definition says
that almost every realization of the time-series
{Z (t), t = 1, 2, . . .} when successively translated completely
fills the space of possible trajectories.

• i.e. the future of this ergodic process holds within it any type fo
behaviour allowable under its probability measure P.
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Ergodicity

Ergodic Theorem†: Let {Z (t), t = 1, 2, . . .} be an ergodic
time-series and suppose that the measureable function g(·) is
integrable (

s
gdP exists, e.g. if g = I

A

then
s

gdP = P(A)). Then
for almost every realization {z(t), t = 1, 2, . . .},

lim
næŒ

1
n

n≠1ÿ

j=0
g(T j({z(t) : t = 1, 2, . . .})) =

⁄
gdP.

† Birkho�: Proof of the Ergodic Theorem (1931).



Single-Path Inference

• Can we do inference form a single sample path to determine
the �-properties?

• Requires that correlation between points decays to zero as the
distance increases - ergodic property.

• if Z (·) is a stationary GP, then Z (·) is ergodic provided
C(h) æ 0 as ||h||2 æ Œ.†

• In practice: can we make inference of a GP observed over a
fixed domain, e.g. [0, 1]? This is known as infill asympototics.

† Blum: Ergodic Theorems. Entry in Encyclopedia of Statistical Sciences, Vol 2,

by S. Kotz and N.L. Johnson, eds., Wiley, NY pg. 541-545 (1982).
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Identifiability

• First, a small aside.

• The log-likelihood function of a GP for the observed vector
y = (y1, . . . , y

n

) is

¸(◊) = ≠n
2 log(2fi) ≠ 1

2 log |�| ≠ 1
2y

T �≠1
y.

• Then the parameters ◊ are identifiable if ¸(◊1) = ¸(◊2) i�
◊1 = ◊2.
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Single-Path Inference

• It turns out these results are very challenging to come by.

• † For a 1-D GP with mean zero and exponential covariance
‡2exp(≠◊|h|) observed over the domain [0, 1], then (◊, ‡2) and
◊Õ, ‡2Õ) are not distinguishable with certainty from the sample
path as long as ◊‡2 = ◊Õ‡2Õ

.

• So, only ◊‡2 is identifiable, not the individual parameters.
• For dimension Ø 2, with a separable covariance, this is not the

case (they are identifiable).

Ying: Asymptotic properties of a maximum likelihood estimator with data from a

Gaussian process (1991)
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‡2exp(≠◊|h|) observed over the domain [0, 1], then (◊, ‡2) and
◊Õ, ‡2Õ) are not distinguishable with certainty from the sample
path as long as ◊‡2 = ◊Õ‡2Õ

.

• So, only ◊‡2 is identifiable, not the individual parameters.
• For dimension Ø 2, with a separable covariance, this is not the

case (they are identifiable).

Ying: Asymptotic properties of a maximum likelihood estimator with data from a

Gaussian process (1991)



Example

source("dace.sim.r")
n=100
design=matrix(seq(0,1,length=n),ncol=1)
l1=list(m1=abs(outer(design[,1],design[,1],"-")))
l.dez=list(l1=l1)
rho=0.2
alpha=1

s2s=10
rs=1/s2s
seed=sample(1:1e5,1)
set.seed(seed)
s2=1
rho=0.2 # -log(.2)*s2=1.6ish
se2=0
z0=sim.field(l.dez,rho,s2,se2=se2,alpha=alpha)
z0=z0-mean(z0)



Example

plot(design,z0,type=�l�,xlab="x",ylab="GP draw",
lwd=2,ylim=c(-5,5))
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Example

set.seed(seed)
s2=1*s2s
rho=0.2
z1=sim.field(l.dez,rho,s2,se2=se2,alpha=alpha)
z1=z1-mean(z1)
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Example

set.seed(seed)
s2=1
rho=0.2^rs
z2=sim.field(l.dez,rho,s2,se2=se2,alpha=alpha)
z2=z2-mean(z2)
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Example

set.seed(seed)
s2=1*s2s
rho=0.2^rs # -log(rho)*s2=1.6ish
z3=sim.field(l.dez,rho,s2,se2=se2,alpha=alpha)
z3=z3-mean(z3)
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