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The Empirical Variogram

How do we know if a correlation model is “good” for our data?

Suppose {Y(s) : s € D C R9} is a real-valued process on a
domain D of d-dimensional Euclidean space, and suppose that
differences of variables displaced by h apart depend only on h.
That is,

Var(Y(x + h) — Y(x)) = 2yy(h)Vx,x + h € D.

The quantity 2y (h) is a function of only the difference
between locations in D, and is called the variogram.

A variogram written as a function of ||h|| is said to be isotropic.
Otherwise, it is anisotropic.
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where cy(h;0) = o?exp (—”’2192) .



Example

= The semi-variogram for the powered exponential model is
vy (h; 0) = cy(0;0) — cy(h; 0)

where cy(h;0) = o?exp (—”heﬂ) :

1
= The empirical semi-variogram is calculated as

vV ooy
Gy () = Save {(B(x) ~ £09)): b — il € T(W)71j=1,....n)

where T(h) is some tolerance region around h (e.g. h+ A, for
A small).

v
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The Empirical Variogram

= How do we know if a correlation model is “good” for our data?
1. Eyeball test: compare the theoretical semivariogram (at various

0's or maybe Oy ) versus the empirical semivariogram.

2. Simple test of Hp : Z(-) has no spatial dependence.f}

1 Cressie & Wikle: Statistics for Spatial-Temporal Data (2011)
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Simple Test of Dependence

2. Let F = L where 62 Z(Y(X' )—)* = 1 ZXX, and hy
is the smallest lag from all p055|ble lags h1,..., h;.

= Reject Hyp for |F — 1| large. How? Permutation-based test is
one distribution-free approach:

= i: Permute the data locations x,(1), - - - ; Xo(n)
= ii: Recompute F
= jii: Repeat steps i,ii many times

= iv: If the observed F is above the 97.5th percentile or below the
2.5th percentile of the permutation distribution, reject Hy at
the 5% level.

Note: this does not test the validity of the correlation model! Only
whether correlation is present or not.



Simple Test of Dependence

3. A simulation approach:

t Ribeiro, Paulo and Diggle: geoR: a package for geostatistical analysis (2001).



Simple Test of Dependence
3. A simulation approach:

= i: Draw independent unconditional realizations from the GP
with given correlation parameters.

t Ribeiro, Paulo and Diggle: geoR: a package for geostatistical analysis (2001).



Simple Test of Dependence

3. A simulation approach:

= i: Draw independent unconditional realizations from the GP
with given correlation parameters.

= ji: Construct empirical variogram at same lags as observed
dataset for each GP draw.

t Ribeiro, Paulo and Diggle: geoR: a package for geostatistical analysis (2001).



Simple Test of Dependence

3. A simulation approach:

= i: Draw independent unconditional realizations from the GP
with given correlation parameters.

= ji: Construct empirical variogram at same lags as observed
dataset for each GP draw.

= Repeat i,ii many times.

t Ribeiro, Paulo and Diggle: geoR: a package for geostatistical analysis (2001).



Simple Test of Dependence

3. A simulation approach:

= i: Draw independent unconditional realizations from the GP
with given correlation parameters.

= ji: Construct empirical variogram at same lags as observed
dataset for each GP draw.

= Repeat i,ii many times.

= Construct variogram “envelopes” from the draws} and see if the
observed empirical variogram of the dataset lie within the
envelope.

t Ribeiro, Paulo and Diggle: geoR: a package for geostatistical analysis (2001).



source("dace.sim.r")
#
# Generate a 2-D realization
#
set.seed(99) #remove for a "real" realization

library(rgl) #for nice plots

n=10

x1=x2=seq(0,1,length=n)
design=as.matrix(expand.grid(x1,x2))

11=1ist (ml=abs(outer(designl[,1] ,design[,1],"-")))
12=1ist (m2=abs (outer(design[,2],design[,2],"-")))
1.dez=1list(11=11,12=12)

rho=c(0.5,0.5)

alpha=2

s2=1

se2=0
z=sim.field(1l.dez,rho,s2,se2=se2,alpha=alpha,
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Example
library (geoR)

# -
## Analysis of Geostatistical Data

## For an Introduction to geoR go to http://www.leg.ufpr.]
## geoR version 1.7-5.2 (built on 2016-05-02) is now load

gsim=cbind(design,z)

gsim=as.geodata(gsim)
vgram=variog(gsim)

## variog: computing omnidirectional variogram

eyefit(vgram)

o o
@ o ©
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Example

vgram.env=variog.mc.env(gsim, obj.var = vgram)

## variog.env: generating 99 simulations by permutating da:
## variog.env: computing the empirical variogram for the 9!
## variog.env: computing the envelops



Example

ot(vgram, envelope = vgram.env)
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Example

vgram.ml=1ikfit(gsim, ini.cov.pars = c(2.5, 1),

cov.model="gaussian", fix.nugget = TRUE,
nugget=1e-10)

## kappa not used for the gaussian correlation function

# -
## 1ikfit: likelihood maximisation using the function optir
## 1likfit: Use control() to pass additional

## arguments for the maximisation function.

## For further details see documentation for optim
## 1ikfit: It is highly advisable to run this function seve
## times with different initial values for the par:

## 1likfit: WARNING: This step can be time demanding!
# -
## likfit: end of numerical maximisation.




Example

plot(vgram, envelope = vgram.env)
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Example

gtmp=gsim

nbins=length(vgram$u)

vgsims=matrix(0,nrow=100,ncol=nbins)

for(i in 1:100) {
gtmp$data=vgram.envysimulated.datal,i]
vg=variog(gtmp)

vgsims[i,]=vg$v

## variog: computing omnidirectional variogram
## variog: computing omnidirectional variogram
## variog: computing omnidirectional variogram
## variog: computing omnidirectional variogram
## variog: computing omnidirectional variogram
## variog: computing omnidirectional variogram



Example

plot (vgram, envelope = vgram.env)
for(i in 1:nbins) points(vg$ulil,quantile(vgsims[,i],0
for(i in 1:nbins) points(vg$uli],quantile(vgsims[,i],0

lines.variomodel (vg$u,cov.model="gaussian",
cov.pars=vgram.ml$cov.pars,nugget=1e-10)
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Sample Properties of GP’s

= path-wise properties depend on behaviour of Z(x) = Z(x,w)
when w is fixed.



Sample Properties of GP’s

= path-wise properties depend on behaviour of Z(x) = Z(x,w)
when w is fixed.

= process-wise properties given as usual specification of mean
and covariance.



Continuity

Definition: Suppose Z(x) is a process with finite second moments.
Then, Z(-) is mean-square continuous at xg if E[|Z(x)|?] < 400 and

limy—xo B2 [|Z(x) - Z(xo)\)2] = 0.

Definition: Z(x) has almost surely continuous sample paths on x
provided

P(w:Vxp € x,2z(x) — z(xp) as x — xp) = 1.
= this one is more abstract. It says that the only events that

occur with probability 1 are those where the sample path of the
process is continuous.



Continuity

= Let cy(+) be the covariance function of a stationary process

Y(-). Then,
E[(Y() = Y ()] = E[Y2(x)=2Y(x)Y(x0) + Y*(x)]
== 2Cy(0) — 2Cy(X — Xo)
= 2 (Cy(O) — Cy(X — Xg))
So,
lims s [(Y() = Y(0))°] = lim ey (0) = ey (x = x0) = 0

<~ /I'mX_>X0Cy(X — Xo) = Cy(O)

i.e. the process is mean-square continuous Vxp € x provided cy(-) is
continuous at the origin. Or similarly, R(h) — 1 as h — 0 and R(h)
is continuous at origin.



Continuity

= For GP’s, mean-square continuity can be expressed as

E[1Z06) = Z09)2] = 0.as [bg = xil > 0.1

t Theorem 3.4.1 in Adler: The Geometry of Random Fields (1981).

DA EN im AAdAlars Thaea Camnrmcatris ~E RandAary Eialde (1091)



Continuity

= For GP’s, mean-square continuity can be expressed as
E [1Z(x) = Z(x)P| = 0 as |x; — x| = 0.1
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Continuity

= For GP’s, mean-square continuity can be expressed as
E [1Z(x) = Z(x)P| = 0 as |x; — x| = 0.1

= |t has also been shown that the sample paths of a GP are
almost surely continuous if R(h) converges to 1 sufficiently
slow:
= 1 If Z(-) is a stationary GRF with correlation function R
satisfying

1 R(h) v|[hllz < 6

c
= Tiog ([[H2)
for some 0 < ¢ < 0o, some € > 0 and some § < 1 then Z(-)
has a.s. continuous sample paths.

= In other words, (1 — R(h))|log(||h||2)|*T¢ < c is bounded.

t Theorem 3.4.1 in Adler: The Geometry of Random Fields (1981).

DA EN im AAdAlars Thaea Camnrmcatris ~E RandAary Eialde (1091)



Continuity

=1
eps=4
h=seq(0,1,length=100)

bound=c/( abs(log(h))~ (1+eps) )

Rh=exp(-h~2)

Rhe=exp(-abs(h))




Continuity

plot(h,bound,type='1"',1lwd=3,col="grey",ylim=c(0,1) ,x1la
lines(h,1-Rh,col="blue")

lines(h,1-Rhe,col="orange")

1-R(H)

0.4

0.2







Continuity

= For the Gaussian correlation model, R(h) = exp(—6h?), then
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Continuity

= For the Gaussian correlation model, R(h) = exp(—6h?), then
Z(-) is a.s. continuous and a.s. infinitely differentiable.

= For the Matern correlation model, Z(-) is a.s. continuous and
|| times a.s. differentiable.

= For the cubic correlation model, Z(-) is a.s. continuous and 2
times differentiable.
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Correlation/Covariance of Derivative Processes

- E[22(x)] = 2E1Z(x)]
= Cov(2-2(x), Z(x')) = 2 Cov(Z(x), Z(x)) = gxc(x — x).

Morris, Mitchell and Ylvisaker: Bayesian design and analysis of computer
experiments: use of derivatives in surface prediction (1993)



Correlation/Covariance of Derivative Processes

= E[£200)] = &EZ(0)]
= Cov(2-2(x), Z(x')) = 2 Cov(Z(x), Z(x)) = gxc(x — x).
. Cov(ax Z(x), 2 2(x)) = 5255 Cov (Z(x), Z(x')) =

62

T c(x — x').

Morris, Mitchell and Ylvisaker: Bayesian design and analysis of computer
experiments: use of derivatives in surface prediction (1993)



Correlation/Covariance of Derivative Processes

E|a2(x)| = ZE[Z(2)]
Cov (12 Z(x), Z(x')) = g Cov (Z(x), Z(x')) = c(x — x').

Cov (£:2(x), 35 2(x)) = g Cov (2(x), Z(x)) =

_2
Ox;0x;

Clearly we at least need c(+) to be twice differentiable to obtain
the correlation/covariance function of the derivative process.

c(x — x').

Morris, Mitchell and Ylvisaker: Bayesian design and analysis of computer
experiments: use of derivatives in surface prediction (1993)
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Single-Path Inference

=« Can we do inference form a single sample path to determine
the Q-properties?

= Requires that correlation between points decays to zero as the
distance increases - ergodic property.

= if Z(-) is a stationary GP, then Z(-) is ergodic provided
C(h) — 0 as ||h]], = oco.t

1 Blum: Ergodic Theorems. Entry in Encyclopedia of Statistical Sciences, Vol 2,
by S. Kotz and N.L. Johnson, eds., Wiley, NY pg. 541-545 (1982).
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Ergodicity

= Greek for “wandering”

= Put simply, allows expectations over {2-space to be estimated
by averages over the covariates (e.g. space, time) from a single
realization.

= We'll describe a simple motivating case for the Ergodic
Theoremt.

= Let T be a translation operator:
TH{Z(t)}:t=1,2,..)={Y(t): t=1,2,...}

where Y(t) = Z(t +1).
s Th=T(T(...)

t Cressie: Statistics for Spatial Data (1993)
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Ergodicity

Let A is a measureable set (e.g.
A={z(-):z(1) < 21,2(2) < z,...,2z(p) < z,}) and define

T YA ={b: T(b) € A}

Then Z(-) is stationary iff P(T~1(A)) = P(A) for every
measurable set A. (e.g. just our usual translation-invariance in
our GP models).

And Z(-) is ergodic if T"}(A) = A (i.e. Ais invariant with
respect to time) implies P(A) = 0 or P(A) = 1.

This means than the trajectories generated by this process
(almost) all belong to a single invariant set.

For our time-indexed process analogy here, this definition says
that almost every realization of the time-series

{Z(t),t =1,2,...} when successively translated completely
fills the space of possible trajectories.

i.e. the future of this ergodic process holds within it any type fo
behaviour allowable under its probability measure P.



Ergodicity

Ergodic Theoremt: Let {Z(t),t =1,2,...} be an ergodic
time-series and suppose that the measureable function g(-) is
integrable ([ gdP exists, e.g. if g = Z then [ gdP = P(A)). Then
for almost every realization {z(t),t =1,2,...},

n—1

//m,,m% S g(Ti({z(t)  t=1,2,..})) = /gdP.

J=0

t Birkhoff: Proof of the Ergodic Theorem (1931).
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Single-Path Inference

= Can we do inference form a single sample path to determine
the Q-properties?
= Requires that correlation between points decays to zero as the
distance increases - ergodic property.
= if Z(-) is a stationary GP, then Z(-) is ergodic provided
C(h) — 0 as ||h]|2 — oo.T

t Blum: Ergodic Theorems. Entry in Encyclopedia of Statistical Sciences, Vol 2,
by S. Kotz and N.L. Johnson, eds., Wiley, NY pg. 541-545 (1982).



Single-Path Inference

= Can we do inference form a single sample path to determine
the Q-properties?

= Requires that correlation between points decays to zero as the
distance increases - ergodic property.

= if Z(-) is a stationary GP, then Z(-) is ergodic provided
C(h) — 0 as ||h]], = oo.t

= |n practice: can we make inference of a GP observed over a
fixed domain, e.g. [0,1]? This is known as infill asympototics.

t Blum: Ergodic Theorems. Entry in Encyclopedia of Statistical Sciences, Vol 2,
by S. Kotz and N.L. Johnson, eds., Wiley, NY pg. 541-545 (1982).
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Identifiability

First, a small aside.
The log-likelihood function of a GP for the observed vector
y=1,.-.,¥n)is

n 1 1 _
00) = —Elog(27r) - 5/0g]2| - EyTZ ly.

Then the parameters @ are identifiable if £(61) = £(0>) iff
0, =0,.
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Single-Path Inference

= |t turns out these results are very challenging to come by.

= 1 For a 1-D GP with mean zero and exponential covariance
o2exp(—0|h|) observed over the domain [0, 1], then (6,0?) and
6’,02') are not distinguishable with certainty from the sample
path as long as 602 = /0.

= So, only 0c? is identifiable, not the individual parameters.

= For dimension > 2, with a separable covariance, this is not the
case (they are identifiable).

Ying: Asymptotic properties of a maximum likelihood estimator with data from a
Gaussian process (1991)



Example

source("dace.sim.r")

n=100

design=matrix(seq(0,1,length=n),ncol=1)

11=1ist (ml=abs(outer(designl[,1],design[,1],"-")))
1.dez=1ist(11=11)

rho=0.2

alpha=1

s2s=10

rs=1/s2s

seed=sample(1:1e5,1)

set.seed(seed)

s2=1

rho=0.2 # -log(.2)*s2=1.6ish

se2=0
z0=sim.field(1l.dez,rho,s2,se2=se2,alpha=alpha)

z0=z0-mean (z0)



Example

plot(design,z0,type='1l"',xlab="x",ylab="GP draw",

lwd=2,ylim=c(-5,5))
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Example

set.seed(seed)

s2=1%s2s

rho=0.2
zl=sim.field(1l.dez,rho,s2,se2=se2,alpha=alpha)

zl=z1-mean(z1)
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Example

set.seed(seed)

s2=1

rho=0.2"rs
z2=sim.field(1l.dez,rho,s2,se2=se2,alpha=alpha)

z2=z2-mean (z2)
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Example

set.seed(seed)

s2=1%s2s

rho=0.2"rs
z3=sim.field(1l.dez,rho,s2,se2=se2,alpha=alpha)

z3=z3-mean(z3)
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