
Gaussian Process Regression and Emulation
STAT8810, Fall 2017

M.T. Pratola

September 16, 2017

Today

Stochastic Gradient Descent;
GP’s for “big data”

Maximum Likelihood in a Big Data World

• Recall our log-likelihood function `(θ; y,X). When the data are
independent, our log-likelihood is

`(θ; y,X) =
n∑

i=1
`(θ; yi , xi)

for a scalar response yi and a vector input xi .

• When n is very large, maximizing the likelihood is expensive
since calculating the likelihood involves all n of the observed
data (yi , xi).

Maximum Likelihood in a Big Data World
• Thinking back to our Newton-Raphson algorithm, this means

that each iterative update to the parameter, θt → θt+1,
induces a huge computational cost.

• In practice, this means that the optimization process will be
terminated relatively early (in terms of number of iterations t)
due to this cost.

• In a highly influential paper, Bottou† investigates the relative
tradeoff of information cost versus computational cost and
shows that stochastic gradient descent arrives at a better
tradeoff in the big data setting.‡

† Bottou: Large-scale machine learning with stochastic gradient descent, Proceedings
of COMPSTAT’2010, pp. 177-186 (2010).

‡ under some reasonable assumptions, naturally.

Simple Supervised Learning Setup
• Consider predicting y by ŷ where the predictor ŷ is chosen

from a family of functions F = {fθ(x)} parameterized by
weight vector θ.

• The loss induced by a function f ∈ F is defined as the negative
log-likelihood function,

Q(z ; θ) = −`(y , x; θ),

where z = (y , x).
• We would like choose a function so as to minimize the

expected risk,

Q =
∫

Q(z ; θ)dP(z) = −
∫
`((y , x; θ)dP(z)

• In practice we usually settle for minimizing the empirical risk,

Qn = 1
n

n∑
i=1

Q(zi ; θ) = −1
n

n∑
i=1

`(yi , xi; θ).

First, some things we know. . .
• The MSE of an estimator ˆ̀ of ` has the following

decomposition, known as the bias-variance tradeoff:

E [(ˆ̀− `)2] = Bias(ˆ̀)2 + Var(ˆ̀)

where Bias(ˆ̀) = E [ˆ̀]− `.
• The law of large numbers tells us that an estimator of the form

¯̀n = 1
n

n∑
i=1

`i → `

as n→∞, where convergence can be in probability (weak law)
or almost surely (strong law).

• For an estimator of the form ¯̀n = 1
n
∑n

i=1 `i , Chebyshev’s
inequality tells us that

P
(
|¯̀n − `| > ε

)
≤ σ2

nε2

where σ2 = Var(`i).

Interpretation

• When n is large, as in the big data setting, then we would like
to believe that our estimator of the loss is fairly accurate.

• Nonetheless, until we reach infinity, it must be the case that
there is some bias, and therefore our gradient is targetting the
wrong thing.

• In other words, while we are guaranteed to (eventually)
minimize the empirical loss, we have no guarantee (and indeed
it is very unlikely) that we will minimize the expected loss.

Interpretation

• At the same time, in the big data setting we are spending a ton
of computational effort to perform our updates at each
iteration of our optimization algorithm θt → θt+1 →

• Given that we know we are targetting the wrong endpoint, is
this the most sensible use of computational resources?

• Does it make sense to get as best of an estimate of the
information content for θt to update to θt+1 given that we will
practically be computationally limited in how many such
updates we can afford to make?

• In other words, could we trade some variance for a procedure
that would be quicker? Even better, could we trade some
variance for a procedure that would be quicker and also target
the expected loss rather than the empirical loss?

Information versus Computation

• Those facts that we know (bias-variance tradeoff, asymptotic
convergence of sample means) are all “information efficiency”
properties, but they don’t tell us much about computational
tradeoffs.

• Really, they pretend that computation is “for free”.

Algorithms

Bottou (2010) investigates 4 optimization algorithms:

• Gradient Descent (GD):

θt+1 = θt − γ
1
n

n∑
i=1
∇θQ(zi ; θt)

Algorithms

Bottou (2010) investigates 4 optimization algorithms:

• Second-order Gradient Descent (2GD):

θt+1 = θt − Γt
1
n

n∑
i=1
∇θQ(zi ; θt)

(which is N-R when Γt = H−1(θt))

Algorithms

Bottou (2010) investigates 4 optimization algorithms:

• Stochastic Gradient Descent (SGD):

θt+1 = θt − γt∇θQ(zt ; θt)

where zt is a randomly picked example from our training
dataset.

Algorithms

Bottou (2010) investigates 4 optimization algorithms:

• Second-order Stochastic Gradient Descent (2SGD):

θt+1 = θt − γtΓt∇θQ(zt ; θt)

where zt is a randomly picked example from our training
dataset.

Big Data Learning

• Let f ∗ = argminf Q̄(f) represent the best possible prediction
function.

• Let f ∗F = argminf ∈F Q̄(f) represent the best possible
prediction function restricted to our family of functions F .

• Let fn = argminf ∈F Q̄n(f) represent the empirical optimum
function restricted to our family F . This assumes that we the
optimization routine used can reach fn and we let it run long
enough to indeed recover it.

• Let f̃n represent the prediction function found that minimizes
the empirical risk to a pre-defined level of accuracy,
Q̄n(f̃n) < Q̄n(fn) + ρ.

Big Data Learning

• Let E = E
[
Q̄(f̃n)− Q̄(f ∗)

]
be the excess error of our solution

f̃n. This error can be decomposed into three terms:

E = E
[
Q̄(f ∗F)− Q̄(f ∗)

]
+ E

[
Q̄(fn)− Q̄(f ∗F)

]
+ E

[
Q̄(f̃n)− Q̄(fn)

]
= Eapp + Eest + Eopt .

Big Data Learning

• The approximation error, Eapp = E
[
Q̄(f ∗F)− Q̄(f ∗)

]
,

measures how closely functions in our family F can
approximate the best solution f ∗.

• The estimation error, Eest = E
[
Q̄(fn)− Q̄(f ∗F)

]
, measures the

effect of minimizing the empircal risk, Q̄n(f) instead of the
expected risk, Q̄(f).

• The optimization error, Eopt = E
[
Q̄(f̃n)− Q̄(fn)

]
measures

the impact of approximate optimization (e.g. computational
runtime limitations) on the expected risk.

Big Data Learning

• Given a time limit on computation, Tmax , a limit on the
samples, nmax , and a target optimization accuracy, ρ, our
optimization problem may be more accurately stated as

minF ,ρ,nE = Eapp+Eest+Eopt subject to
{

n ≤ nmax

T (F , ρ, n) ≤ Tmax

• in small-scale learning problems, we are always far away from
Tmax so we simply choose n = nmax and arbitrarily set ρ to
effectively eliminate the optimization error Eopt .

• but in large-scale problems, we are always limited by Tmax . So
we need to account for the tradeoffs between n, ρ and
T (F , ρ, n).

Optimization Accuracy
• A summary of these algorithms’ optimization performance (in

terms of accuracy, ρ) is given in Bottou (2010):
GD GD2 SGD SGD2

time per iteration n n 1 1
iterations to ρ log(1ρ) log(log(1ρ)) 1

ρ
1
ρ

time to ρ nlog(1ρ) nlog(log(1ρ)) 1
ρ

1
ρ

• And under some reasonable assumptions, they argue that the
asymptotic behavior of the excess error goes like

E = Eapp + Eest + Eopt

∼ Eapp +
(log(n)

n

)α
+ ρ †

for some α ∈ [12 , 1].

† Although they aren’t specific, we assume ∼ has the usual meaning limn→∞
f (n)
g(n) = 1.

Optimization Accuracy

• Assuming one would like the three sources of error to
asymptotically decrease at the same rate, we have

E ∼ Eapp ∼ Eest ∼ Eopt ∼
(log(n)

n

)α
∼ ρ

• These asymptotic equivalences allow one to express n and rho
in terms of the excess error E . Then subbing into row (3) of
the table, we can compare the algorithms in terms of time to
excess error.

Optimization Accuracy

GD GD2 SGD SGD2
time per iteration n n 1 1
iterations to ρ log(1

ρ
) log(log(1

ρ
)) 1

ρ
1
ρ

time to ρ nlog(1
ρ

) nlog(log(1
ρ

)) 1
ρ

1
ρ

time to E 1
E1/α log(1/E)2 1

E1/α log(1/E)log(log(1/E)) 1/E 1/E

• We see that in the small-sample case (row 3), SGD/SGD2 are
very slow to converge.

• Yet, in the big-data setting (row 4), SGD/SGD2 require the
least amount of time to reach a specified expected risk.

Asymptotic Performance: Time to Accuracy

0.002 0.004 0.006 0.008 0.010

20
0

40
0

60
0

80
0

10
00

Accuracy

T
im

e
to

 A
cc

ur
ac

y

0.002 0.004 0.006 0.008 0.010

4
5

6
7

8
9

10

Accuracy

lo
g

T
im

e
to

 A
cc

ur
ac

y

Black=GD, Grey=GD2, Blue=SGD. Here n = 100 and α = 0.5.
SGD2 differs by a constant so asympotitically equivalent to SGD.

Asymptotic Performance: Time to Excess Error

0.002 0.004 0.006 0.008 0.010

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07

Excess Error

T
im

e
to

 E
xc

es
s

E
rr

or

0.002 0.004 0.006 0.008 0.010

0
5

10
15

20

Excess Error

lo
g

T
im

e
to

 E
xc

es
s

E
rr

or

Black=GD, Grey=GD2, Blue=SGD. Here α = 0.5. SGD2 differs by
a constant so asympotitically equivalent to SGD.

Stochastic Gradient Descent

• Idea of SGD/SGD2 is that we draw a sample from P(z),
compute the loss and update θ, then rinse and repeat.

• In practice, the algorithm draws each sample randomly from
the dataset, then the whole procedure is repeated a number of
times (called epochs).

• For stochastic gradient descent, convergence requires∑
t γ

2
t <∞ and

∑
t γt =∞.

• Best convergence speed, under some regularity conditions,
requires γt ∼ t−1. In this case, the expected residual error
E [ρ] ∼ t−1.

• There are batch-variants (say draw a small number of samples
from P(z)) but we won’t go into those.

Stochastic Gradient Descent
Input: initial learning rate γ0, max_epochs, X, y

Input: initial parameter estimate θ0

initialize iteration t = 0

for e in 1 to max_epochs begin

randomly shuffle X, y

for i in 1 to n begin

grad = ∇θQ(f (xi), yi ; θt)

θt+1 = θt − γt × grad

t = t + 1

if stopping criterion met then break

end

end

SGD Example

library(sgd) # offers various implementations of SGD
set.seed(42)
n = 1e4
d = 10
X = matrix(rnorm(n*d), ncol=d)
theta = rep(5, d+1)
eps = rnorm(n)
y = cbind(1, X) %*% theta + eps
dat = data.frame(y=y, x=X)
fit.sgd = sgd(y ~ ., data=dat, model="lm")
fit.lm = lm(y ~ ., data=dat)

SGD Example

Q.lm.grad<-function(theta,y,X) {
n=length(y)
-(2/n)*(t(y)-theta%*%t(X))%*%X

}
X=cbind(1,X)
err=Inf
theta.cg.hist=NULL
theta.cg=rep(1,11)
theta.cg.hist=cbind(theta.cg.hist,theta.cg)
eta=0.1
n=length(y)

SGD Example
while(err>1e-5)
{

gradient = Q.lm.grad(theta.cg,y,X)
theta.cg = as.vector(theta.cg - eta*gradient)
err = sum(gradient^2)
theta.cg.hist=cbind(theta.cg.hist,theta.cg)

}

plot(fit.sgd$estimates[1,],fit.sgd$estimates[2,],
type='l',lwd=2,xlab=expression(theta[1]),
ylab=expression(theta[2]),xlim=c(0,6),ylim=c(0,6))

points(theta[1],theta[2],pch=20,cex=3,col="blue")
points(fit.lm$coefficients[2],fit.lm$coefficients[3],

pch=20,cex=1,col="green")
lines(theta.cg.hist[2,],theta.cg.hist[3,],lwd=2,

col="grey")

SGD Example

0 1 2 3 4 5 6

0
1

2
3

4
5

6

θ1

θ 2

SGD Example

0 1 2 3 4 5 6

0
1

2
3

4
5

6

θ1

θ 2

SGD Example
Number of iterations for SGD algorithm:

max(fit.sgd$pos)

[1] 1189

(not even 1 epoch).

Effective number of iterations for CG algorithm:

ncol(theta.cg.hist)*n

[1] 430000

SGD for GPs?

• So SGD may be useful when our likelihood factorizes as

`(y) =
n∑

i=1
`(yi)

• Is this helpful in our GP regression case? No.
• However, it turns out that an interesting approximation to the

assumed joint distribution of the Gaussian Process can be
made, and the approximation is constructed so as to induce the
form we need to apply SGD.

Variational Inference

• The idea is to approximate the distribution we want, say p,
with a distribution that has a simpler form, say q.

• The simpler form of q is prescribed. For instance, in our
situation we would want it to decompose as

∏n
i=1 qi

• But we need to construct q so that it is, in some sense, close
to the desired distribution p.

• We need some way to measure the similarity of p and q.

Kullback-Liebler Divergence
• Is a measure of distributional dissimilarity:

KL(q||p) =
∫

q(y)log
(q(y)

p(y)

)
dy

= Eq(y)

[
log

(q(y)
p(y)

)]
• KL(q||p) ≥ 0 with equality iff q(y) = p(y) almost everywhere.
• If q ≡ N(µq,Σq) and p ≡ N(µp,Σp) then

KL(q||p) = 1
2[tr(Σ−1p Σq) + (µp − µq)T Σ−1p (µp − µq)

−n − ln
(

det(Σp)
det(Σq)

)
]

• KL(q||p) = −
∫

q(y)log
(

p(y)
q(y)

)
dy

Kullback-Liebler Divergence

• A popular application of the KL divergence follows in the
following sense. Let p(y , z) = p(z |y)p(y)

• Then, we have

ln(p(y)) = L(q(z)) + KL(q(z)||p(y))

where
L(q(z)) =

∫
q(z)ln

(p(y , z)
q(z)

)
dz

and
KL(q(z)||p(y)) = −

∫
q(z)ln

(p(z |y)
q(z)

)
dz

Kullback-Liebler Divergence

Check:∫
[log(p(y , z))−log(q(z))]q(z)dz−[

∫
(log(p(z |y))−log(q(z)))q(z)dz]

=
∫

q(z)log
(log(p(y , z))

p(z |y)

)
dz

=
∫

q(z)log
(log(p(z |y)p(y))

p(z |y)

)
dz

= p(y)

Kullback-Liebler Divergence

• Interpretation is q(z) is our approximation to the conditional
distribution p(z |y) and KL(q||p) measures how far away our
approximation is.

• This means that the log-likelihood, ln(p(y)) is factored into a
KL term and the L term.

• Since KL ≥ 0, the L term represents a lower-bound on the
log-likelihood.

Breaking the dependency

• Recall that our predictor was the BLUP:

f̂ (x) = rTR−1y

where rT = (cor(f (x), f (x1), . . . , cor(f (x), f (xn)))
• By the properties of the MVN distribution, this is nothing but

the conditional expectation given our data.

MVN Conditional Mean

If 
f (x)
f (x1)
...

f (xn)

 ∼ N
((

0
0n

)
, σ2

[
1 rT

r R

])

then

f (x)|f (x1), . . . , f (xn) ∼ N
(
rT R−1y, σ2(1− rT R−1r

)
Note that the conditional mean of this distribution is
E [f (x)|(f1, . . . , fn)T = y] = rT R−1y = f̂ (x)

GPs with SGD

• Hensman et al (2013)† combine three ideas to arrive at an
approximate inference procedure for GP regression that allows
the use of SGD.

• They combine
• the properties of conditional Normals and landmark points or

inducing variables
• an assumption that our function is observed with some noise

(not unlike adding a small diagonal term to R in our usual
setup)

• a variational approximation for performing model fitting on a
distribution that factors in a useful way for using SGD

† Hensman, Fusi, and Lawrence: Gaussian processes for big data, arXiv preprint
arXiv:1309.6835 (2013).

The Basic Idea

• Let’s look at our conditional distribution again, but this time
lets pretend we are predicting at many points rather than a
single point:

If 

f (x1)
...

f (xn)
f (x′1)
...

f (x′m)


∼ N

((
0n
0m

)
, σ2

[
Rnn Rnm
Rmn Rnn

])

The Basic Idea

Then

f (x1), . . . , f (xn)|
(
f (x′1), . . . , f (x′m)

)
= y ∼

N
(
RnmR−1mmy, σ2(Rnn − RnmR−1mmRmn

)
• If m << n, wouldn’t it be great if we could learn our parameter

estimates only using f1, . . . , fm? Our matrix inversions would
be much less costly!

• This is not possible. But even if it were, where would we
choose the locations x ′1, . . . , x ′m?

GPs with SGD

• Let y be our data vector of noisy observations of
f (xi), i = 1, . . . , n:

yi = f (xi) + ε

where ε ∼ N(0, β−1).
• Let f = (f (x1), . . . , f (xn)) be the vector of function

observations at settings x1, . . . , xn.

• Let u = (f (x′1), . . . , f (x′m)) be the vector of “inducing
variables” which are the observations of the same function at
landmark points x′1, . . . , x′m.

GPs with SGD
• We will model our (f,u) as a realization of a (smooth)

Gaussian Process:(
f
u

)
∼ N

((
0n
0m

)
,

[
Knn Knm
Kmn Kmm

])

which admits the factorization

p(f|u)p(u),

where
p(u) = N (0m,Kmm)

and
p(f|u) = N

(
KnmK−1mmu, K̃

)
,

where
K̃ = Knn −KnmK−1mmKmn.

GPs with SGD

• Our observed data has conditional distribution

y|f ∼ N(f, β−1Inn) =
n∏

i=1
N(fi , β−1)

• This leads to the conditional likelihood function

y|u ∼ N(KnmK−1mmu, β−1Inn + K̃)

GPs with SGD

• The approach starts with placing a lower-bound on the
conditional likelihood,

log(p(y|u)) ≥
∫

log(p(y|f))p(f|u)df ≡ Ef|u[log(p(y|f))]

• Since we have p(y|f) =
∏n

i=1 N(fi , β−1) one can arrive at

exp(L) =
n∏

i=1
N(yi |µi , β

−1)exp(−1
2 k̃ii)

where µ = KnmK−1mmu.

GPs with SGD

• Next they introduce the variational distribution
q(u) ∼ N(m,S) and lower-bound the overall data likelihood,

log(p(y)) ≥
∫

(L+ log(p(u))− log(q(u)))q(u)du := L′

• This turns out to have the following separable form,
n∑

i=1

(
logN

(
yi |kT

i K−1mmm, β−1
)
− 1

2βk̃ii −
1
2 tr(SΛi)

)
−KL(p(u)||q(u))

where Λi = βK−1mmkikT
i K−1mm

GPs with SGD

• Taking the derivitave with respect to the parameters of the
variational distribution, we arrive at

m̂ = βΛ−1K−1mmKmny

Ŝ = Λ−1

where Λ = K−1mm +
∑

Λi .

GPs with SGD

• The overall procedure iterates over the following steps until
convergence:

1. optimize the landmark locations x′1, . . . , x′m with resepct to L.
• this causes the landmark locations to be chosen so as to

minimize the k̃ii , essentially ensuring the landmarks are never
too far away from the training data

2. optimize m,S with respect to L′.
• in practice they recommend using a batch-sequential variant of

SGD.

3. optimize kernel hyperparameters and β with respect to L′.

The implementation is available as Python package GPy at
https://github.com/SheffieldML/GPy.

https://github.com/SheffieldML/GPy

Examples

Figure 1: Trivial GP example

Each pane shows the GP after updating with 1 iteration of batch-SGD. The batches
are shown as solid dots, while data from previous batches are shown as empty dots.
The location of inducing variables and the distribution of q(u) is shown as the vertical
bars. Source: Hensman et al (2013).

Examples

Figure 2: Simple 2D GP example

Colored points are data while model fit is represented by the contours. Locations of
the inducing variables are shown as the empty dots. Source: Hensman et al (2013).

GPs with SGD

• In practice, in the examples they demonstrate they seem to
choose the inducing points a priori using some method which is
unclear, and then hold them fixed.

• In an apartment price dataset with 10k training points,
m = 800 inducing points were used when regressing log(Price)
on lattitude/longitude.

• training was batch-SGD with a batch size of 1,000.

• In an airline delays dataset with 700k training points and p = 8
predictors, m = 1, 000 inducing points were used.

• training was batch-SGD with a batch size of 5,000.

GPs with SGD

• Positives:
• it is cool that they were able to linearize the inference to take

advantage of SGD.

• Possible Negatives:
• m itself may grow too large
• how to chose number of inducing points?
• SGD is still a sequential procedure - we might want parallelism

for really huge data.
• what about non-stationarity?

