Bayesian Gaussian Process Regression

STATS8810, Fall 2017

M.T. Pratola

October 7, 2017

Today

Bayesian Gaussian Process Regression

Bayesian GP Regression

Recall we had observations from our expensive simulator,
y(x1),...,y(xn), where x € x C RY.

We assumed the data is observed error-free, y(x) = z(x) and
we also assumed that the simulator output is a realization of a
GP, z(x) ~ GP(0,c(-; A1, p)).

Our modeling assumption means that

y ~ N(0,A7'R(p))-

For simplicity, we will assume our correlation matrix is defined
using the separable Gaussian correlation function,

2
Cor(x,x; p) = Hp,x’),
So our likelihood function is

LN p) = o e (TR
WP = rder ()2 P\ 2 Y

Bayesian GP Regression

= To complete our Bayesian model, we need to specify prior
distributions on the parameters A and p = (p1,...,pq). We
will assume (A, p) = w(A)7w(p).

= Taking advantage of conjugacy, we will use a Gamma prior for

the precision,
A ~ Gamma(a, b),

which means
T(\) o< X Lexp (—bN).

Bayesian GP Regression

= The correlation parameters have no conjugate form (which
means we will have to resort to the Metropolis-Hastings
sampler for these parameters).

= However we will make a further simplifying assumption of prior
independence of the correlation parameters,
w(p) = Iy m(pi)-
= Since each p; € (0,1), an appropriate prior to use is the Beta
distribution,
pi ~ Beta(a,),

which means

m(pi) o< pFHL = pi)*

Bayesian GP Regression

= We are interested in the posterior distribution,

d
w(A, ply) o< L(A, ply)m(X) TT = (i),
i=1
and the posterior predictive distribution,

w(z(ly) = | 72, p.y)r(\ ply)drd.

s Lets start with the posterior. ..

Bayesian GP Regression: The Posterior

Sampling from 7(\, ply) in closed form is not possible.
However, we can get samples from w(\|p,y) in closed form due
to our conjugate prior for the precision.

And we can get approximate samples from 7(p;|\, p_;,y)
using the Metropolis-Hastings algorithm.

This will define a Metropolis-within-Gibbs sampler, which will
give us an algorithm that returns approximate draws from our
posterior.

Bayesian GP Regression: Precision Parameter

= One can showt the full conditional for the precision is

1
7(Alp,y) ~ Gamma <a+ g, b+ 2yTR_ly) .

1 an often used term in the scientific vernacular for “you should show".

Bayesian GP Regression: Correlation Parameter

= For the correlation parameters, we will need a proposal
distribution, q(p; — p}).

= A uniform proposal with width d; has seemingly worked well for
me,

o)

5.

q(pj — pj) = Uniform(p; — =

= ¢ will be an important tuning parameter in order to get our
algorithm to work well.

= In order to calculate the Metropolis-Hastings acceptance
probability for p}, we need the part of the posterior that is
relevant, namely,

A/2 AT -1
7T(pf!)\,p_;,y)<><Wexp (—y R™ y) “H1-p))®

3.
4,

Metropolis-within-Gibbs Sampler

So at iteration t, our posterior sampling algorithm will look like
the following:

. Set p(t) g p(t_l)_

For j=1,...,d draw pj(-t):

= Draw pj’- ~ Uniform (pj(-t) - %,p,(-t) + g)

= fCalculate
o ((Pl \, p_,J))
= min 1 —_— .

RACRRRY)
= Draw u ~ Uniform(0, 1)

= If u < « then accept p,(-t) = ph.

Repeat steps (1)-(3) until convergence.

1 The ratio involving g does not appear here since the g we are using is a symmetric
proposal and so cancels.

Metropolis-within-Gibbs Sampler

= How to choose the §;'s?

= Trial and error.
= Adaptive techniques to target a desired acceptance rate of 44%-

we will see shortly.

regress<-function(y,l.dez,N,pi,mh,last=1000,adapt=TRU
{
n=length (y)
k=length(1l.dez)
draw.lambdaz=rep(NA,N)
draw.rhoz=matrix (NA,nrow=N,ncol=k)
rr=rep(mh$rr,k)
initial guesses
draw.lambdaz[1]=1/var(y)
draw.rhoz[1,]=rep(.5,k)
#accept/reject ratio trackers
accept.rhoz=rep(0,k)

lastadapt=0
In=diag(n)
one=rep(1,n)
rhoz.new=rep(NA,k)

Example

for(i in 2:N)
{
Draw the correlation parameters (Metropolis-Hast
draw.rhoz[i,]=draw.rhoz[i-1,]
for(j in 1:k)
{
rhoz.new=draw.rhoz[1i,]
rhoz.new[jl=runif (1,draw.rhoz[i-1,jl-rr[j],
draw.rhoz[i-1,jl+rr[j])
a=min(0,logp(y,draw.lambdaz[i-1] ,rhoz.new,1l.dez,
-logp(y,draw.lambdaz[i-1] ,draw.rhoz[i,],1.dez,
if (Log(runif (1))<a)
{
draw.rhoz[i, jl=rhoz.newl[j]
accept.rhoz[jl=accept.rhoz[j]+1
}
}

Example

Rz=rhogeodacecormat (1.dez,draw.rhoz[i,])$R
Rz=Rz+In*1le-14

cholRz=chol (Rz)

Rzinv=chol2inv(cholRz)

draw.lambdaz[i]=rgamma(1l,pi$az+n/2,pifbz+
0.5%t (y) %*%Rzinvi*%y)

Example

if (adapt && i%%(N/20)==0 && i<(N*.5+1))
{
rate.rhoz=accept.rhoz/(i-lastadapt)
cat("Adapting rates from ",rate.rhoz,"\n");
for(j in 1:k)
if (rate.rhoz[j1>.49 || rate.rhoz[j]<.39)
rr[jl=rr[jl*rate.rhoz[j]l/.44
lastadapt=i
accept.rhoz=rep(0,k)

Example

source("dace.sim.r")

set.seed(88)

n=5; k=1; rhotrue=0.2; lambdatrue=1
design=as.matrix(runif(n))
11=1ist(ml=outer(designl[,1],design[,1],"-"))
1l.dez=1list(11=11)

R=rhogeodacecormat (1.dez,c(rhotrue))$R

L=t (chol(R))

u=rnorm(nrow(R))

z=L7*/%u

Example

source("regression.r")

pi=

list (az=5,bz=5,rhoa=rep(1,k) ,rhob=rep(5,k))

mh=1ist (rr=1e-5)
fit=regress(y,l.dez,5000,pi,mh,last=2000,adapt=FALSE)

##
##
##
##
##
##
##
#Ht
##

Bayesian Gaussian Process Interpolation model

The last 1999 samples from the posterior will be rep«
The stepwidth for uniform corr. param proposal distn i:
Prior params: az=5 bz=5

0.04 percent complete

0.06 percent complete
0.08 percent complete

Example

par (mfrow=c(1,2))

plot (fit$lambdaz,type='1"',xlab="draw",
ylab="lambdaz")

abline (h=lambdatrue)

plot(fit$rhoz,type='1"',xlab="drav",
ylab="rhoz")
abline (h=rhotrue)

lambdaz
0.3 0.4

0.2

0.1

MH

T T T T T
0 500 1000 1500 2000

draw

acceptance rate for p: 0.9996

rhoz

0.50015 0.50025

0.50005

500

T
1000

draw

T
1500

T
2000

mh=

Example

list(rr=0.9)

fit=regress(y,1l.dez,5000,pi,mh,last=2000,adapt=FALSE)

#Hit
##
##
##
##
##
##
##
##

Bayesian Gaussian Process Interpolation model

The last 1999 samples from the posterior will be rep«
The stepwidth for uniform corr. param proposal distn i:
Prior params: az=5 bz= 5

0.04 percent complete

0.06 percent complete
0.08 percent complete
0.1 percent complete
0.12 percent complete

Example

par (mfrow=c(1,2))

plot (fit$lambdaz,type='1l"',xlab="draw",ylab="lambdaz",
ylim=c(0,2.5))

abline (h=lambdatrue)

plot(fit$rhoz,type='1"',xlab="dravw",ylab="rhoz",
ylim=c(0,1))
abline (h=rhotrue)

Example

n o
o 7 —
o =e]
o 7 S 7
wn ©
- 7 I
3
B IS
LY AT
8
o H\ |’ I ‘m”\“‘\ L ‘ <
i | ‘ o
wn o~
[SI =}
o | o
(=} o
T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000
draw draw

MH acceptance rate for p: 0.1418

mh=

Example

list(rr=0.27)

fit=regress(y,1l.dez,5000,pi,mh,last=2000,adapt=FALSE)

#Hit
##
##
##
##
##
##
##
##

Bayesian Gaussian Process Interpolation model

The last 1999 samples from the posterior will be rep«
The stepwidth for uniform corr. param proposal distn i:
Prior params: az=5 bz= 5

0.04 percent complete

0.06 percent complete
0.08 percent complete
0.1 percent complete
0.12 percent complete

Example

par (mfrow=c(1,2))

plot (fit$lambdaz,type='1l"',xlab="draw",ylab="lambdaz",
ylim=c(0,2.5))

abline (h=lambdatrue)

plot(fit$rhoz,type='1"',xlab="dravw",ylab="rhoz",
ylim=c(0,1))
abline (h=rhotrue)

15 2.0 25

lambdaz

1.0

0.5

0.0

MH

Example

<
=

0.8

rhoz
0.6

0.4

0.2

\nl WL lfi‘ HH' \‘w ‘,I.

T T T T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000

draw draw

acceptance rate for p: 0.4438

Adaptive MCMC

= Tuning the proposal distribution by hand can be difficult and
time-consuming, especially when we have many parameters
being updated by Metropolis-Hastings steps.
= When the proposal distribution has large variance (is “wide")
then the sampler can explore large areas of the parameter space
= but much of this space does not have high probability under the
posterior
= so proposals will be rejected
= which means we rarely accept proposals
= When the proposal distribution has small variance (is “narrow")
then the sampler can explore in a direction that is improves the
chances of being accepted
= so proposals are almost always accepted
= but it is very slow to explore the parameter space and reach the
region of high posterior probability
= and samples will be highly correlated even if it does reach the
right region of parameter space

Adaptive MCMC

= Adaptive MCMC seeks to automatically tune the proposal
distribution (here, §) to get good “mixing” of the Markov
Chain.

= |f r is the proportion of accepted proposals after m iterations,

update ¢ as ,

= —4.
0.44

= This seeks to adjust § so that the acceptance rate will be closer
to an idealized rate of 0.44, or 44%.

= The 44% target is a theoretical resultf for a 1-dimensional
parameter. For a higher-dimensional parameter, the theoretical
target decreases (e.g. ~23% for dimensions > 5).

5/

1 For a Normal random walk proposal distribution and a Normal target density, the
optimal proposal width is one that gives an acceptance rate of 44% for a
1-dimensional parameter.

Adaptive MCMC

= This automatic adaptive trick is very helpful, but it's usage can
be easily abusedf.

= For instance, one cannot adapt at every iteration. Rather adapt
every once in awhile, the update the acceptance rate.

= Once it looks like we have reached a good acceptance rate,
stop adapting the proposal. All the draws up to this point will
be thrown out.

= Now that we have a good 4, run the chain forward until burn-in
and then save as many posterior draws as we desire.

t See Jeff Rosenthal’s “adapt” example of adaptive MCMC gone wrong at
http://www.probability.ca/jeff/java/.

http://www.probability.ca/jeff/java/

mh=

Example

list(rr=.05)

fit=regress(y,1l.dez,5000,pi,mh,last=2000,adapt=TRUE)

#Hit
##
##
##
##
##
##
##
##

Bayesian Gaussian Process Interpolation model

The last 1999 samples from the posterior will be rep«
The stepwidth for uniform corr. param proposal distn i:
Prior params: az=5 bz= 5

0.04 percent complete

0.06 percent complete
0.08 percent complete
0.1 percent complete
0.12 percent complete

Example

par (mfrow=c(1,2))

plot (fit$lambdaz,type='1l"',xlab="draw",ylab="lambdaz",
ylim=c(0,2.5))

abline (h=lambdatrue)

plot(fit$rhoz,type='1"',xlab="dravw",ylab="rhoz",
ylim=c(0,1))
abline (h=rhotrue)

Example

2.0 25
I

15

lambdaz

Tl

1.0

L, u‘ NI
i |

0.5

0.0
L

T T T T T
0 500 1000 1500 2000

draw

MH acceptance rate for p: 0.428

rhoz

<
=

0.8

0.6

0.4

0.2

0.0

i M 1l |‘ml ikt

| M“"‘ N

T T
500 1000

draw

T
1500

T
2000

Using our Posterior Samples

= Once we have draws from our posterior distribution for some
parameter(s), say 61, ...,0n, we can use these to approximate
statistics of interest.

= For example, say we are interested in an estimator of some
function t(#). The ergodic average is

1N
ty = N ; t(&,-).
If the Markov Chain is ergodic and E[t(#)] < o] then
ty — E[t(0)] a.s. as N — oc.

= this is the Markov Chain equivalent of the Strong Law of Large
Numbers.

Using our Posterior Samples

= Some typical examples of t(6)'s:

= t(0)=0= %> 6 — E[6]

= t(0) =Z(0 < u)= § > Z(0: < u) = P < u).

= A 100(1 —)% credible interval for t(6) is [tan /2, tn(1—a/2)]
where t = (t(05(1)); - - -, t(0o(n))) Where
Oo(1) < Os(2) < -+ < 0=0(N) (easy to get using R's quantile
function).

= etc.

Bayesian GP Predictions

= Given our samples from the posterior distribution, 7(A, ply),
how do we form predictions?

= Would like to use the posterior predictive distribution,

w(z(ly) = [72 p.y)7(N ply)drdp

= we know it will be hopeless to do this integration in closed-form
since we don't even have (), ply) in closed form.
= so we approximate it numerically:

N

m(z(x)ly) = Y_ m(z(x)]A7, p1?)

i=1

where N is the number of samples saved from the posterior
distribution during our MCMC algorithm.

Bayesian GP Predictions

The quantity Y7, w(z(x)| A7), p()) is rarely of interest in and
of itself. Rather we are interested in predictive realizations of
our process.

What if we are interested in only the mean? Recall

E[z(x)|\, p,y] = r" Ry, the mean of the predictive
distribution 7(z(x)|A, p,y).

Then we can get the posterior mean as

EGb] = [2)n(z)I p.)7 ply)

&

N
> (A, i) TRTY (N o))y
i=1

This is equivalent to our simpler examples where
t(z(x) = E[z(x)]. But what about the uncertainties?

Bayesian GP Posterior Predictive Distribution

To get the full posterior predictive distribution, we simply take
t = z(x). In other words, calculate

zi(x) ~ 7(z(x)|Ai, pisY)

fori=1,...,N

The resulting realizations zi, ..., zy are (approximate) draws
from the posterior predictive distribution, m(z(x)ly).

We can calculate the posterior predictive mean as

N

Elz(ly] = 3 3 2i(x).

i=1

Similarly, we can calculate pointwise quantiles or standard
deviations to arrive at credible intervals of the posterior
predictive distribution (the uncertainties we want!)

One could also calculate other functions, t(-), of the z's.

Example

predict<-function(l.v,fit,eps=1e-10)

{

n=length(fit$y)
m=nrow(1l.v[[1]])-n

N=length(fit$lambdaz)

draw.preds=matrix(0,nrow=N,ncol=m)

for(i in 1:N) {
Rall=rhogeodacecormat(l.v,fit$rhoz[i,])$R
Extract the sub-matrices we need
Ryy=Rall[1l:n,1:n]
Rgg=Rall[(n+1): (nt+m), (n+1) : (n+m)]
Rgy=Rall[(n+1): (n+m),1:n]
Ryy.inv=chol2inv(chol (Ryy))

Mean of conditional distribution:
m.cond=Rgy%*/Ryy.invi*iy

Covariance of conditional distribution:
E.cond=fit$lambdaz[i] = (-1) * (Rgg-Rgy’%*/Ryy . invi*%t (

Let's generate a realization!
L=t (chol (E.cond+diag(ng) *eps))
u=rnorm(ng)
draw.preds[i,]=m.cond + L%*%u

Example

grid=as.matrix(seq(0,1,length=100))
design.all=rbind(design,grid)
11=1ist (ml=outer(design.all[,1] ,design.all[,1],"-"))

1.v=1list(11=11)
fitp=predict(l.v,fit)

Example

plot(design,y,pch=20,col="red",cex=2,xlim=c(0,1),
ylim=c(2.5,3.5) ,xlab="x",
main="Predicted mean response +/- 2s.d.")
for(i in 1:nrow(fitp$preds))
lines(grid,fitp$preds[i,],col="grey",1lwd=0.25)

mean=apply (fitp$preds,2,mean)
sd=apply(fitp$preds,2,sd)
lines(grid,mean-1.96%sd,lwd=0.75,col="black")
lines(grid,mean+1.96%*sd,lwd=0.75,col="black")
lines(grid,mean,lwd=2,col="blue")

3.4

3.2

3.0

2.8

2.6

Example

Predicted mean response +/- 2s.d.

0.0

0.2

0.4 0.6

0.8

1.0

Example

plot(design,y,pch=20,col="red",cex=2,xlim=c(0,1) ,ylim=
xlab="x",main="Predicted median, q.025 and q.975")
for(i in 1:nrow(fitp$preds))
lines(grid,fitp$preds[i,],col="grey",1lwd=0.25)
med=apply (fitp$preds,2,quantile,0.5)

q.025=apply (fitp$preds,2,quantile,0.025)
q.975=apply (fitp$preds,2,quantile,0.975)
lines(grid,q.025,1wd=0.75,col="black")
lines(grid,q.975,1wd=0.75,col="black")
lines(grid,mean,lwd=2,col="blue")

3.4

3.2

3.0

2.8

2.6

Example

Predicted median, q.025 and g.975

0.0

0.2

0.4 0.6

0.8

1.0

Calibrating the Priors

= There are many paperst discussing the problem of how one
should setup prior distributions. | will take a simple approach
for the current problem at hand.

= Strictly speaking, one should calibrate priors before seeing the
data.

= In practice, often a weakly informative summary statistic of the
data may be helpful in calibrating key aspects of the prior
distribution.

= for instance, the sample mean or sample variance of the data,
and relating those to the appropriate moments of the prior.

t J. Oakley: Eliciting Gaussian process priors for complex computer codes, Journal of
the Royal Statistical Society: Series D (The Statistician) vol.51, pp.81-97 (2002).

Calibrating the Priors

For the correlation prior, 7(p) = Hj‘lzl 7(pj) we had used a
Beta(a, 3) prior,

m(py) o< pfTH(L = p)
This distribution has mean E[p;] = ;93

For the GP model, | typically place more prior mass on a
smooth function when working with simulators, and let the
data drive the posterior away from smoothness.

Lets look at a few possibilities.

Calibrating the Priors

Ausuaq

1.0

0.8

0.6

0.4

0.2

0.0

P

Calibrating the Priors

= So a reasonable strategy is to set the mean to some a priori
level of smoothness, and calibrate the shape.

= For instance, one might look at a few priors, generate
unconditional realizations from the GP and show them to your
scientific collaborator to get feedback on what properties they
empirically expect the response to exhibit.

= For the correlation parameter, Beta(5,5) (blue) or Beta(2,5)

(orange) have been reasonably good starting points in my
experience.

Example: 7(p) ~ Beta(5,5)

set.seed(88)
a=5; b=b5
m=10

n=25
draws=matrix(0,nrow=m,ncol=n)
x=seq(0,1,length=n)
X=abs (outer(x,x,"-"))

for(i in 1:m) {
rho=rbeta(l,a,b)
R=rho~ (X"2)
L=t (chol (R+diag(n)*.Machine$double.eps*100))
i E0)
Z=rnorm(n,mean=0,sd=1)
draws [i,]=L%*%Z+mu
}
plot(x,draws[1,],x1im=c(0,1) ,ylim=range (draws) ,type='1

response

-05 0.0 0.5 1.0 15

-1.0

Example: 7(p) ~ Beta(5,5)

0.0

0.2 0.4 0.6 0.8

1.0

Example: 7(p) ~ Beta(2,5)

set.seed(88)
a=2; b=5
m=10

n=25
draws=matrix(0,nrow=m,ncol=n)
x=seq(0,1,length=n)
X=abs (outer(x,x,"-"))

for(i in 1:m) {
rho=rbeta(l,a,b)
R=rho~ (X"2)
L=t (chol (R+diag(n)*.Machine$double.eps*100))
i E0)
Z=rnorm(n,mean=0,sd=1)
draws [i,]=L%*%Z+mu
}
plot(x,draws[1,],x1im=c(0,1) ,ylim=range (draws) ,type='1

response

0.0 0.5 1.0 15

-0.5

-1.0

Example: 7(p) ~ Beta(2,5)

Example: 7(p) ~ Beta(1,5)

set.seed(88)
a=1; b=5
m=10

n=25
draws=matrix(0,nrow=m,ncol=n)
x=seq(0,1,length=n)
X=abs (outer(x,x,"-"))

for(i in 1:m) {
rho=rbeta(l,a,b)
R=rho~ (X"2)
L=t (chol (R+diag(n)*.Machine$double.eps*100))
i E0)
Z=rnorm(n,mean=0,sd=1)
draws [i,]=L%*%Z+mu
}
plot(x,draws[1,],x1im=c(0,1) ,ylim=range (draws) ,type='1

response

-05 0.0 0.5 1.0 15

-1.0

Example: 7(p) ~ Beta(1,5)

Calibrating the Priors

For the precision prior, m(\) we had used a Gamma(a, b) prior,
m(A\) o A7 Lexp(—bN)

with shape parameter a > 0 and rate paramter b > 0.

This distribution has mean E[\] = and variance

Var(A\) = .
For the GP model, | typically calibrate the mean to the inverse
of the sample variance.

Lets look at a few possibilities.

Calibrating the Priors

W
TN

b:
a=1b

— a=5b
— a=lb
— a=5,

Ausuaq

P

Calibrating the Priors

= If the variance of the data is around 1, then Gamma(5,5) is a
reasonable starting point.

= One might again look at a few priors, generate unconditional
realizations from the GP and show them to your scientific
collaborator to get feedback on what properties they
empirically expect the response to exhibit.

= or look at the sample variances of these draws.

Example: 7(\) ~ Gamma(5,5)

set.seed(88)
a=5; b=b5
m=100

n=25
rho=0.2
draws=rep(0,m)
x=seq(0,1,length=n)
X=abs (outer(x,x,"-"))

for(i in 1:m) {
R=rho~ (X"2)
L=t (chol (R+diag(n)*.Machine$double.eps*100))
i E0)
Z=rnorm(n,mean=0,sd=1)
Y=sqrt (1/rgamma (1, shape=a,rate=b))*LJ*%Z+mu
Rinv=chol2inv(t (L))
draws [i]=1/n*t (Y) %*%Rinvy%*%Y

Density

1.0

0.8

0.6

0.4

0.2

0.0

Example: 7(\) ~ Gamma(5,5)

0.6 0.8

Density
0.4

0.2

T
0.0

T
0.5

T T T T T T T T
1.0 15 2.0 25 3.0 0 2 4

Precision, A Variance, o?

