BART

STATS8810, Fall 2017

M.T. Pratola

November 1, 2017

Today

BART: Bayesian Additive Regression Trees

BART: Bayesian Additive Regression Trees

= Additive model generalizes the single-tree regression model:

Y(x) = f(x) +¢ €~ N0, o?)
where

m

fx) = 3 g T M)).

j=1

= We viewed each tree as representing a map
g(x; Tj, M;) : RP — R. Can get a richer class of models by
considering the sum of many such maps.

= We will see that each individual function g(x; 7;, M;) is
constrained to be a simplistic function that explains only a
small portion of the response variability.

= so-called “sum of weak-learners” assumption.

BART: Bayesian Additive Regression Trees

Figure 1: BART uses a sum of many simple trees.

BART: Bayesian Additive Regression Trees

= There is, of course, nothing new about a GAM-like formulation.

= However, one advantage of the tree-based approach is the
tree's natural ability to capture interactions, possibly of a
high-dimensional form. Or, to not capture such behavior if not
present.

= That is, in the tree based approach we are learning the form of
predictor functions themselves rather than assuming a fixed
class of bases with a particular form.

BART Model

= The data is modeled as
Y () {(T5, Mi)}y 0% ~ N (Z g(x; 7],/\41),02)

giving our likelihood,
LT MDY, 0®IY) =
2
1 n m
(ro2)n2 P (2 22(~ 2 glxilTi M;))
j=

where Y = (y(x1), ..., y(Xn))

BART Model

= Default number of trees is m = 200, which seems to work well
in many problems. Increasing m allows one to have a model
with greater fidelity to more complex responses.

= Interpretation is as follows. We can view g(x; 7j, M;) as a
function that assigns a terminal node scalar p, for a given
input x.

= And so, the expected response E[Y(x)| {(7;, M;)}[1;] is
simply the sum of all such pj,'s that is assigned to x by each

tree (7;, M;).

BART Priors

= Similar to our single-tree model, the BART prior is factored as

T({(T, MDY}y, 0%) = 7(0®) [n(MyIT))(T;)
j=1

where for each j,

B;

m(MyIT)) = T 7(wn),

b=1

where B; = | M| is the number of terminal nodes in tree 7;.

BART Priors: 7(7))

= The interior of the tree 7; is made up of split rules,

{ (v, cj;)}[-zl with discrete uniform priors as in our single-tree

model,
m(vj) = HW(VJi)

and

m(¢j) = [T m(ciilvii T7\vin)

= And the tree is regularized via the depth-penalizing prior from
before as well,

(i splits) = a(1 + d(nji,mj1)) ™"
where d(n;i,nj1) is the depth from node 7); to the root node in
tree 7;.

= The default prior is the same as our single-tree model:
a=0.950=2

BART Priors: 7(u;i|7;)

= The prior on the scalar terminal node parameters is the
conjugate Normal,

wji ~ Ny, 07).

= Note that this prior implies a priori that the prior on
ETY ()I{(Tj Mj)}Ly] is
N(m:u#a mo_i)'

= In practice, data is usually centered to have mean zero and
scaled s0 (Ymin, Ymax) = (—0.5,0.5) and the prior used is

i ~ N(O, ai).

BART Priors: 7(u;i|7;)

= The induced prior on E[Y(x)[{(7};, M;)}",] is

N(O, mai).

= The strategy to calibrate this prior is the same as the
single-tree model: choose a value k such that k/mo, = 0.5
which implies that the prior is

o 05
N

= As in the single-tree model, the default value recommended is
k=2

pji ~ N()-

Density

20

15

10

BART Priors: 7(u;i|7;)

Prior with m=200, k=2

|

-0.5 0.0

Hii

0.5

BART Priors: 7(u;i|7;)

This means that we induce further shrinkage of the p;'s
towards zero by increasing k, or by increasing m.

However, for m fixed, increasing k implies more of the

response variability ends up in o2.

While for k fixed, increasing m implies more of the response
variability ends up in f(x).

Besides the default choice of kK = 2, one might try tuning this
prior hyperparameter using cross-validation.

BART Priors: 7(0?)

= The variance prior is again
2 -2 2
o ~x (v,)

and is calibrated similarly as in the single-tree model.

= v is selected to get an “appropriate shape.” Typical values are
between 3 and 10, with v = 3 being the default.

BART Priors: 7(0?)

2

= The scale parameter 7< is selected in the following way.

= Provide an initial estimate of the standard deviation of your
data, &. Typically the sample standard deviation.

= Provide an upper quantile g, with g = 0.90 being the default.

= 72 is selected so that, a priori, P(0 < &) = q.

= The idea is that our data is unlikely all noise, so a conservative
approach is to setup the prior such that it is very unlikely to
estimate the variance to be greater than the sample variance of
our data.

= The smaller v the more concentrated on small ¢ the prior
becomes.

Sampling BART’s Posterior

= The posterior is

T({(Tj, MLy o?IY) o
LE(T; MYy oY) (0®) [T m(MyI T (T;)

J
J=1

Sampling BART’s Posterior

= First, note the following:

L({(ﬁvMJ)}Jll vUZ‘Y)

2
— (2mlz)n/2exp (;22 (y(x,-) - Zg(x,-m,/\/tj)))

Jj=1

1
= 2rory 2P <2 22 ri(xi) — g X:|7]aM))>

where rj(x;) = y(x;) — 3§ &(xi[Tk, M)

Sampling BART’s Posterior

Our MCMC algorithm will perform the following steps:

.Forj=1,...,m:
1.1 Draw Tj|o?, Rj where R; = (rj(x1), ..., rj(xs))

= Metropolis-Hastings step via proposal distribution
1.2 Draw M;|T},02,R;
= Gibbs step using conjugate prior

. Draw o?| {(T;, M;)}T ., Y

j=1’
= Gibbs step using conjugate prior

So once we have the R;’s, the algorithm proceeds similarly as
the single-tree algorithm.

2 15~ n

1

otni2

where s = 371 (y; — f(x;))* and

f(xi) = 27, g(xi: Tj, M;).

o (-

9 MJ)}jmzl 7Y
1
I XP <—

(v +n)

v12 + ns?

202

(

vV+n

\

/

Draw o?| {(T, M))}", .Y

j:l 9

. 1 (v+n) (vr2+ns?
= And we recognize i exp (— o2 (Ti as the

v+n
kernel of a scaled-inverse-chisquared distribution, so
2 2
2 - N m _2 vTS + ns
2T MIH Y ~ x <u+ 0 LIS)

= So we know how to perform the Gibbs step for 0.

Draw MJ'WL o2

= Suppose there are B terminal nodes in tree T}, 77, ... ,77}‘33.
Using the same factorization as the single-tree case:

L(0277J7MJ|RJ) X EXP< 2 2 Z ,:I X,|7;,M)) >

B N

S B Sl SR U T

k=1j:rj(x;)€nt

B 1 Nk
= Mlee| 5 3 (560) - m)
g
k=1 i:rj(xi)enk

where ny is the number of observations mapping to terminal
nodes nj’-i(and >, ng = n.

Draw M|T, 02,y

= In other words, conditional on 7}, R;, the scalar terminal node
parameters are independent.

= So, we can simply write down the full conditional for each 1k
and draw them sequentially using Gibbs steps.

Draw ,ujk|7j, 0'27 Rj

= Assuming mean-centered observations, our prior is
2
m(pj|Tj) = N(O, 7},)-

= Based on our Normal-Normal conjugacy results, the full
conditional is

-1 _ -1
2 ng 1 Ny Fik ny 1
W(Mjk‘a 77ja RJ)NN <0_2+0_5> (2)) <0_2+05>

= 1
where 7y = K Ei:q(x,—)énf rJ(XI)

Figure 2: Tree Moves

Marginal Likelihood

= We will again need to marginalize our likelihood over the p
parameters.

= Marginalizing the portion of the likelihood associated with
terminal node 77,’3, we have

LglotR) = |
N

!

L(nplii, o2, Ry (i) d i

Birth Proposal

. Randomly select a terminal node k € {1,..., B;} with
probability & - where Bj = [M}].

. Introduce a new rule vj ~ m,(vj) and cutpoint cj ~ mc(cjk)
where 7, 7. are typically discrete Uniform on the available
variable, cutpoints.

. Calculate

- {1 w(T}lo% R,->q(7;|7/>}
7 (Tlo? R)a(T})

J

. Generate u ~ Uniform(0, 1). If u < « then accept 7}
otherwise reject.

As mentioned in the single-tree model, death proposals work
similarly.

MCMC Algorithm

Let's recap our sampling algorithm.

.Forj=1,....m:
1.1 Draw Tj|o?, R;

= With probability 7, do a birth proposal, otherwise a death
proposal.

= More complex moves possible, such as changing
variable/cutpoints of existing tree.

1.2 Draw M;|T},02,R;
= For k=1,...,B;, perform our Gibbs steps by drawing

-1 - -1
2 Nk 1 Nk ik Nk 1
NJkUaW7RJNN<(02+Uz) (—)7(02+Uz) >
H H

. Draw ¢?| {(T, MDY Y
= Perform our Gibbs step by drawing

m _ vr2 + ns?
(T M) Y ~ 2 (n)

V+n

Example

source("dace.sim.r")

set.seed(88)

n=5; k=1; rhotrue=0.2; lambdatrue=1
design=as.matrix(runif(n))
11=1ist(ml=outer(designl[,1],design[,1],"-"))
1l.dez=1list(11=11)

R=rhogeodacecormat (1.dez,c(rhotrue))$R

L=t (chol(R))

u=rnorm(nrow(R))

z=L7*/%u

y=as.vector(z)

Example

library (BayesTree)
preds=matrix(seq(0,1,length=100) ,ncol=1)

Variance prior
shat=sd (y)

nu=3

q=0.90

Mean prior
k=2

Tree prior
m=1

alpha=0.95
beta=2

nc=100

MCMC settings
N=1000
burn=1000

Example

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=

k=k,power=beta,base=alpha,ntree=m,numcut=nc,
ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 1

Prior:

k: 2.000000

degrees of freedom in sigma prior: 3
quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000
use quantiles for rule cut points: O
data:

number of training observations: 5

Example

plot(design,y,pch=20,col="red",cex=2,xlim=c(0,1),
ylim=c(2.3,3.7) ,xlab="x",
main="Predicted mean response +/- 2s.d.")
for(i in 1:nrow(fit$yhat.test))
lines(preds,fit$yhat.test[i,],col="grey",1lwd=0.25)
mean=apply (fit$yhat.test,2,mean)

sd=apply(fit$yhat.test,2,sd)
lines(preds,mean-1.96%sd,1lwd=0.75,col="black")
lines(preds,mean+1.96*sd,1lwd=0.75,col="black")
lines(preds,mean,lwd=2,col="blue")
points(design,y,pch=20,col="red")

Example

Predicted mean response +/- 2s.d.

3.6

3.4

3.2
|

2.8
|

2.6
|

2.4

0.0 0.2 0.4 0.6 0.8 1.0

Example

m=10
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=s
k=k,power=beta,base=alpha,ntree=m,numcut=nc,

ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 10

Prior:

k: 2.000000

degrees of freedom in sigma prior: 3
quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000
use quantiles for rule cut points: O

Example

Predicted mean response +/- 2s.d.

3.6

3.4

2.4

0.0 0.2 0.4 0.6 0.8 1.0

Example

m=20
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=s
k=k,power=beta,base=alpha,ntree=m,numcut=nc,

ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 20

Prior:

k: 2.000000

degrees of freedom in sigma prior: 3
quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000
use quantiles for rule cut points: O

Example

Predicted mean response +/- 2s.d.

3.6

3.4

2.4

0.0 0.2 0.4 0.6 0.8 1.0

Example

m=100
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=s
k=k,power=beta,base=alpha,ntree=m,numcut=nc,

ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 100

Prior:

k: 2.000000

degrees of freedom in sigma prior: 3
quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000
use quantiles for rule cut points: O

Example

Predicted mean response +/- 2s.d.

9€

v

€

e

o

€

8¢

9¢C

v'e

1.0

0.8

0.6

0.4

0.2

0.0

Example

m=200
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=s
k=k,power=beta,base=alpha,ntree=m,numcut=nc,

ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 200

Prior:

k: 2.000000

degrees of freedom in sigma prior: 3
quantile in sigma prior: 0.900000

power and base for tree prior: 2.000000 0.950000
use quantiles for rule cut points: O

Example

Predicted mean response +/- 2s.d.

9€

v

€

e

o

€

8¢

9¢C

v'e

1.0

0.8

0.6

0.4

0.2

0.0

Example

m=200

k=1

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=
k=k,power=beta,base=alpha,ntree=m,numcut=nc,
ndpost=N,nskip=burn)

##

##

Running BART with numeric y

##

number of trees: 200

Prior:

k: 1.000000

degrees of freedom in sigma prior: 3
quantile in sigma prior: 0.900000

Example

Predicted mean response +/- 2s.d.

3.6

3.4

2.4

0.0 0.2 0.4 0.6 0.8 1.0

Example

nu=3
g=0.99

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=
k=k,power=beta,base=alpha,ntree=m,numcut=nc,
ndpost=N,nskip=burn)

##

##

Running BART with numeric y
#H

number of trees: 200

Example

Predicted mean response +/- 2s.d.

3.6

3.4

2.4

0.0 0.2 0.4 0.6 0.8 1.0

Example

q=0.99

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=
k=k,power=beta,base=alpha,ntree=m,numcut=nc,
ndpost=N,nskip=burn)

##

##

Running BART with numeric y
#H

number of trees: 200

Example

Predicted mean response +/- 2s.d.

3.6

3.4

3.2
|

2.4

0.0 0.2 0.4 0.6 0.8 1.0

Example

q=0.99

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=
k=k,power=beta,base=alpha,ntree=m,numcut=nc,
ndpost=N,nskip=burn)

##

##

Running BART with numeric y
#H

number of trees: 200

2.6 2.8 3.0 3.2 3.4 3.6

2.4

Example

Predicted mean response +/- 2s.d.

0.0

0.2

0.4 0.6

0.8

1.0

Example

q=0.99
nc=1000

fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=
k=k,power=beta,base=alpha,ntree=m,numcut=nc,
ndpost=N,nskip=burn)

##
##
Running BART with numeric y

Example

Predicted mean response +/- 2s.d.

3.6

3.4

2.4

0.0 0.2 0.4 0.6 0.8 1.0

Example

library(rgl)
load("co2plume.dat")
plot3d(co2plume)

rgl.snapshot ("co2a.png")

Example

stack_inerts

y=co2plume$co?2

x=co2plume[,1:2]

preds=as.data.frame(expand.grid(seq(0,1,length=20),
seq(0,1,length=20)))

colnames (preds)=colnames (x)

shat=sd(y)

Try m=200 trees, the recommended default

m=200

And k=1

k=1

And nu=1, g=.99

nu=1

q=0.99

And numcuts=1000

nc=1000

fit=bart(x,y,preds,sigest=shat,sigdf=nu,sigquant=q,

Example

plot (fit$sigma,type='1"',xlab="Iteration",

ylab=expression(sigma))

1.00

0.95

0.90

0.85

0.80

Example

o

200

400

Iteration

600

800

1000

Example

ym=fit$yhat.test.mean
ysd=apply (fit$yhat.test,2,sd)
persp3d(x=seq(0,1,length=20),y=seq(0,1,length=20) ,z=ma

col="grey" ,xlab="stack_inerts",ylab="time",zl
plot3d(co2plume,add=TRUE)
rgl.snapshot ("co2b.png")

Example

coz2

stack_inerts

Example

persp3d(x=seq(0,1,length=20) ,y=seq(0,1,length=20) ,z=ma
col="grey" ,xlab="stack_inerts",ylab="time",zl

persp3d(x=seq(0,1,length=20) ,y=seq(0,1,length=20),
z=matrix (ym+2+*ysd,20,20),col="green",add=TRUE)

persp3d(x=seq(0,1,length=20) ,y=seq(0,1,length=20),
z=matrix (ym-2+*ysd,20,20),col="green",add=TRUE)

plot3d(co2plume,add=TRUE)

rgl.snapshot ("co2c.png")

Example

coz2

stack _inerts

