BART

STAT8810, Fall 2017

M.T. Pratola

November 1, 2017

Today

BART: Bayesian Additive Regression Trees

BART: Bayesian Additive Regression Trees

Additive model generalizes the single-tree regression model:

$$Y(\mathbf{x}) = f(\mathbf{x}) + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$

where

$$f(\mathbf{x}) = \sum_{j=1}^{m} g(\mathbf{x}; \mathcal{T}_j, \mathcal{M}_j).$$

- We viewed each tree as representing a map $g(\mathbf{x}; \mathcal{T}_j, \mathcal{M}_j) : \mathbb{R}^p \to \mathbb{R}$. Can get a richer class of models by considering the sum of many such maps.
- We will see that each individual function g(x; T_j, M_j) is constrained to be a simplistic function that explains only a small portion of the response variability.
 - so-called "sum of weak-learners" assumption.

BART: Bayesian Additive Regression Trees

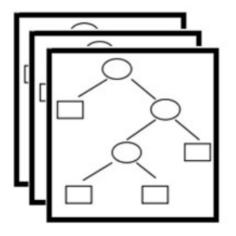


Figure 1: BART uses a sum of many simple trees.

BART: Bayesian Additive Regression Trees

- There is, of course, nothing new about a GAM-like formulation.
- However, one advantage of the tree-based approach is the tree's natural ability to capture interactions, possibly of a high-dimensional form. Or, to not capture such behavior if not present.
- That is, in the tree based approach we are learning the form of predictor functions themselves rather than assuming a fixed class of bases with a particular form.

BART Model

• The data is modeled as

$$|Y(\mathbf{x})| \{(\mathcal{T}_j, \mathcal{M}_j)\}_{j=1}^m, \sigma^2 \sim N\left(\sum_{j=1}^m g(\mathbf{x}; \mathcal{T}_j, \mathcal{M}_j), \sigma^2\right)$$

giving our likelihood,

$$L(\{(\mathcal{T}_{j}, \mathcal{M}_{j})\}_{j=1}^{m}, \sigma^{2} | \mathbf{Y}) = \frac{1}{(2\pi\sigma^{2})^{n/2}} exp\left(\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y(\mathbf{x}_{i}) - \sum_{j=1}^{m} g(\mathbf{x}_{i} | \mathcal{T}_{j}, \mathcal{M}_{j})\right)^{2}\right)$$

where $\mathbf{Y} = (y(\mathbf{x}_1), \dots, y(\mathbf{x}_n)).$

BART Model

- Default number of trees is m = 200, which seems to work well in many problems. Increasing m allows one to have a model with greater fidelity to more complex responses.
- Interpretation is as follows. We can view $g(\mathbf{x}; \mathcal{T}_j, \mathcal{M}_j)$ as a function that assigns a terminal node scalar μ_{jb} for a given input \mathbf{x} .
- And so, the expected response $E[Y(\mathbf{x})|\{(\mathcal{T}_j,\mathcal{M}_j)\}_{j=1}^m]$ is simply the sum of all such μ_{jb} 's that is assigned to \mathbf{x} by each tree $(\mathcal{T}_j,\mathcal{M}_j)$.

BART Priors

Similar to our single-tree model, the BART prior is factored as

$$\pi(\{(\mathcal{T}_j, \mathcal{M}_j)\}_{j=1}^m, \sigma^2) = \pi(\sigma^2) \prod_{j=1}^m \pi(\mathcal{M}_j | \mathcal{T}_j) \pi(\mathcal{T}_j)$$

where for each j,

$$\pi(\mathcal{M}_j|\mathcal{T}_j) = \prod_{b=1}^{\mathcal{B}_j} \pi(\mu_{jb}),$$

where $B_j = |\mathcal{M}_j|$ is the number of terminal nodes in tree \mathcal{T}_j .

BART Priors: $\pi(\mathcal{T}_i)$

• The interior of the tree \mathcal{T}_j is made up of split rules, $\{(v_{ji}, c_{ji})\}_{i=1}^{|\mathcal{T}_j|}$ with discrete uniform priors as in our single-tree model,

$$\pi(\mathbf{v}_j) = \prod_i \pi(v_{ji})$$

and

$$\pi(\mathbf{c}_j) = \prod_i \pi(c_{ji}|v_{ji}, \mathcal{T}_j \setminus v_{ji}).$$

 And the tree is regularized via the depth-penalizing prior from before as well,

$$\pi(\eta_{ii} \text{ splits}) = \alpha(1 + d(\eta_{ii}, \eta_{i1}))^{-\beta}$$

where $d(\eta_{ji}, \eta_{j1})$ is the depth from node η_{ji} to the root node in tree \mathcal{T}_i .

• The default prior is the same as our single-tree model: $\alpha = 0.95$, $\beta = 2$.

BART Priors: $\pi(\mu_{ii}|\mathcal{T}_i)$

 The prior on the scalar terminal node parameters is the conjugate Normal,

$$\mu_{ji} \sim N(\mu_{\mu}, \sigma_{\mu}^2).$$

• Note that this prior implies a priori that the prior on $E[Y(\mathbf{x})|\{(\mathcal{T}_j,\mathcal{M}_j)\}_{j=1}^m]$ is

$$N(m\mu_{\mu}, m\sigma_{\mu}^2)$$
.

• In practice, data is usually centered to have mean zero and scaled so $(y_{min}, y_{max}) = (-0.5, 0.5)$ and the prior used is

$$\mu_{ji} \sim N(0, \sigma_{\mu}^2).$$

BART Priors: $\pi(\mu_{ii}|\mathcal{T}_i)$

• The induced prior on $E[Y(\mathbf{x})|\{(\mathcal{T}_j,\mathcal{M}_j)\}_{j=1}^m]$ is

$$N(0, m\sigma_{\mu}^2)$$
.

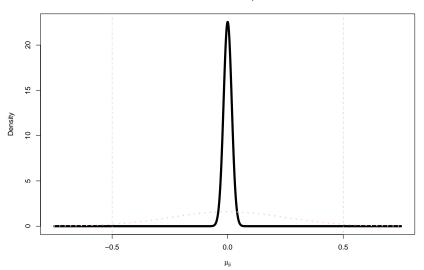
• The strategy to calibrate this prior is the same as the single-tree model: choose a value k such that $k\sqrt{m}\sigma_{\mu}=0.5$ which implies that the prior is

$$\mu_{ji} \sim N(0, \frac{0.5}{k\sqrt{m}}).$$

 As in the single-tree model, the default value recommended is k = 2.

BART Priors: $\pi(\mu_{ji}|\mathcal{T}_j)$

Prior with m=200, k=2



BART Priors: $\pi(\mu_{ji}|\mathcal{T}_j)$

- This means that we induce further shrinkage of the μ_{ji} 's towards zero by increasing k, **or** by increasing m.
- **However**, for m fixed, increasing k implies more of the response variability ends up in σ^2 .
- While for k fixed, increasing m implies more of the response variability ends up in $f(\mathbf{x})$.
- Besides the default choice of k = 2, one might try tuning this prior hyperparameter using cross-validation.

BART Priors: $\pi(\sigma^2)$

The variance prior is again

$$\sigma^2 \sim \chi^{-2}(\nu, \tau^2)$$

and is calibrated similarly as in the single-tree model.

• ν is selected to get an "appropriate shape." Typical values are between 3 and 10, with $\nu=3$ being the default.

BART Priors: $\pi(\sigma^2)$

- The scale parameter τ^2 is selected in the following way.
 - Provide an initial estimate of the standard deviation of your data, $\hat{\sigma}$. Typically the sample standard deviation.
 - Provide an upper quantile q, with q = 0.90 being the default.
 - τ^2 is selected so that, a priori, $P(\sigma < \hat{\sigma}) = q$.
- The idea is that our data is unlikely all noise, so a conservative approach is to setup the prior such that it is very unlikely to estimate the variance to be greater than the sample variance of our data.
- The smaller ν the more concentrated on small σ the prior becomes.

Sampling BART's Posterior

The posterior is

$$\pi(\{(\mathcal{T}_j, \mathcal{M}_j)\}_{j=1}^m, \sigma^2 | \mathbf{Y}) \propto$$

$$L(\{(\mathcal{T}_j, \mathcal{M}_j)\}_{j=1}^m, \sigma^2 | \mathbf{Y}) \pi(\sigma^2) \prod_{i=1}^m \pi(\mathcal{M}_j | \mathcal{T}_j) \pi(\mathcal{T}_j)$$

Sampling BART's Posterior

• First, note the following:

$$L(\{(\mathcal{T}_{j}, \mathcal{M}_{j})\}_{j=1}^{m}, \sigma^{2} | \mathbf{Y})$$

$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} exp\left(\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y(\mathbf{x}_{i}) - \sum_{j=1}^{m} g(\mathbf{x}_{i} | \mathcal{T}_{j}, \mathcal{M}_{j})\right)^{2}\right)$$

$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} exp\left(\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(r_{j}(\mathbf{x}_{i}) - g(\mathbf{x}_{i} | \mathcal{T}_{j}, \mathcal{M}_{j})\right)^{2}\right)$$

where $r_j(\mathbf{x}_i) = y(\mathbf{x}_i) - \sum_{k \neq j}^m g(\mathbf{x}_i | \mathcal{T}_k, \mathcal{M}_k)$.

Sampling BART's Posterior

- Our MCMC algorithm will perform the following steps:
- **1.** For j = 1, ..., m:
 - **1.1** Draw $\mathcal{T}_j | \sigma^2, \mathbf{R}_j$ where $\mathbf{R}_j = (r_j(\mathbf{x}_1), \dots, r_j(\mathbf{x}_n))$
 - Metropolis-Hastings step via proposal distribution
 - **1.2** Draw $\mathcal{M}_j | \mathcal{T}_j, \sigma^2, \mathbf{R}_j$
 - Gibbs step using conjugate prior
- **2.** Draw $\sigma^2 | \{ (\mathcal{T}_j, \mathcal{M}_j) \}_{i=1}^m, \mathbf{Y}$
 - Gibbs step using conjugate prior
- So once we have the \mathbf{R}_j 's, the algorithm proceeds similarly as the single-tree algorithm.

Draw $\sigma^2 | \{ (\mathcal{T}_i, \mathcal{M}_i) \}_{i=1}^m, \mathbf{Y}$

 $\pi(\sigma^{2}|\nu,\tau^{2}) = \frac{\left(\frac{\nu\tau^{2}}{2}\right)^{\nu/2}}{\Gamma\left(\frac{\nu}{2}\right)\sigma^{\nu+2}} exp\left(-\frac{\nu\tau^{2}}{2\sigma^{2}}\right) \propto \frac{1}{\sigma^{\nu+2}} exp\left(-\frac{\nu\tau^{2}}{2\sigma^{2}}\right)$

 $\pi(\sigma^2 | \{(\mathcal{T}_j, \mathcal{M}_j)\}_{j=1}^m, \mathbf{Y}) \propto \frac{1}{\sigma^n} exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y(\mathbf{x}_i) - f(\mathbf{x}_i))^2\right)$

 $\times \frac{1}{\sigma^{\nu+2}} exp\left(-\frac{\nu\tau^2}{2\sigma^2}\right)$

 $= \frac{1}{\sigma^{(\nu+n)+2}} exp\left(-\frac{(\nu+n)}{2\sigma^2} \left(\frac{\nu\tau^2+ns^2}{\nu+n}\right)^{\nu+n}\right)$

We have

So.

where $s^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$ and

 $f(\mathbf{x}_i) = \sum_{i=1}^m g(\mathbf{x}_i; \mathcal{T}_i, \mathcal{M}_i).$

Draw $\sigma^2 | \{ (\mathcal{T}_j, \mathcal{M}_j) \}_{i=1}^m, \mathbf{Y}$

• And we recognize $\frac{1}{\sigma^{(\nu+n)+2}} exp\left(-\frac{(\nu+n)}{2\sigma^2}\left(\frac{\nu\tau^2+ns^2}{\nu+n}\right)\right)$ as the kernel of a scaled-inverse-chisquared distribution, so

$$|\sigma^2| \left\{ (\mathcal{T}_j, \mathcal{M}_j) \right\}_{j=1}^m, \mathbf{Y} \sim \chi^{-2} \left(\nu + n, \frac{\nu \tau^2 + n s^2}{\nu + n} \right)$$

• So we know how to perform the Gibbs step for σ^2 .

Draw $\mathcal{M}_j | \mathcal{T}_j, \sigma^2, \mathbf{R}_j$

• Suppose there are B terminal nodes in tree $\mathcal{T}_j, \eta_{j1}^b, \ldots, \eta_{jB}^b$. Using the same factorization as the single-tree case:

$$L(\sigma^{2}, \mathcal{T}_{j}, \mathcal{M}_{j} | \mathbf{R}_{j}) \propto \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (r_{j}(\mathbf{x}_{i}) - g(\mathbf{x}_{i} | \mathcal{T}_{j}, \mathcal{M}_{j}))^{2}\right)$$

$$= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{k=1}^{B} \sum_{i: r_{j}(\mathbf{x}_{i}) \in \eta_{k}^{b}}^{n_{k}} (r_{j}(\mathbf{x}_{i}) - \mu_{jk})^{2}\right)$$

$$= \prod_{k=1}^{B} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i: r_{j}(\mathbf{x}_{i}) \in \eta_{k}^{b}}^{n_{k}} (r_{j}(\mathbf{x}_{i}) - \mu_{jk})^{2}\right)$$

where n_k is the number of observations mapping to terminal nodes η_{ik}^b and $\sum_k n_k = n$.

Draw $\mathcal{M}|\mathcal{T}, \sigma^2, \mathbf{y}$

- In other words, conditional on \mathcal{T}_j , \mathbf{R}_j , the scalar terminal node parameters are independent.
- So, we can simply write down the full conditional for each μ_{jk} and draw them sequentially using Gibbs steps.

Draw $\mu_{jk}|\mathcal{T}_{j}, \sigma^{2}, \mathbf{R}_{j}$

Assuming mean-centered observations, our prior is

$$\pi(\mu_{jk}|\mathcal{T}_j) = N(0, \sigma_{\mu}^2).$$

Based on our Normal-Normal conjugacy results, the full conditional is

$$\pi(\mu_{jk}|\sigma^2, \mathcal{T}_j, \mathbf{R}_j) \sim N\left(\left(\frac{n_k}{\sigma^2} + \frac{1}{\sigma_\mu^2}\right)^{-1} \left(\frac{n_k \overline{r}_{jk}}{\sigma^2}\right), \left(\frac{n_k}{\sigma^2} + \frac{1}{\sigma_\mu^2}\right)^{-1}\right)$$

where $\bar{r}_{jk} = \frac{1}{n_k} \sum_{i:r_i(\mathbf{x}_i) \in \eta_k^b} r_j(\mathbf{x}_i)$.

Draw $\mathcal{T}_j | \sigma^2, \mathbf{R}_j$

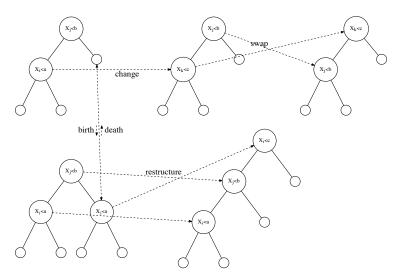


Figure 2: Tree Moves

Marginal Likelihood

- We will again need to marginalize our likelihood over the μ parameters.
- Marginalizing the portion of the likelihood associated with terminal node η_{ν}^{b} , we have

$$L(\eta_{jk}^b|\sigma^2,\mathbf{R}_j) = \int_{\mu_{jk}} L(\eta_{jk}^b|\mu_{jk},\sigma^2,\mathbf{R}_j)\pi(\mu_{jk})d\mu_{jk}$$

Birth Proposal

- **1.** Randomly select a terminal node $k \in \{1, \ldots, B_j\}$ with probability $\frac{1}{B_j}$ where $B_j = |\mathcal{M}_j|$.
- 2. Introduce a new rule $v_{jk} \sim \pi_v(v_{jk})$ and cutpoint $c_{jk} \sim \pi_c(c_{jk})$ where π_v, π_c are typically discrete Uniform on the available variable, cutpoints.
- 3. Calculate

$$\alpha = \min \left\{ 1, \frac{\pi(\mathcal{T}'_j | \sigma^2, \mathbf{R}_j) q(\mathcal{T}_j | \mathcal{T}'_j)}{\pi(\mathcal{T}_j | \sigma^2, \mathbf{R}_j) q(\mathcal{T}'_j | \mathcal{T}_j)} \right\}$$

- **4.** Generate $u \sim \mathsf{Uniform}(0,1)$. If $u < \alpha$ then accept \mathcal{T}'_j otherwise reject.
 - As mentioned in the single-tree model, death proposals work similarly.

MCMC Algorithm

- Let's recap our sampling algorithm.
- **1.** For i = 1, ..., m:
 - **1.1** Draw $\mathcal{T}_i|\sigma^2$, \mathbf{R}_i
 - With probability π_b do a birth proposal, otherwise a death proposal.
 - More complex moves possible, such as changing variable/cutpoints of existing tree.
 - **1.2** Draw $\mathcal{M}_i | \mathcal{T}_i, \sigma^2, \mathbf{R}_i$
 - For $k = 1, ..., B_i$, perform our Gibbs steps by drawing

$$\mu_{jk}|\sigma^2, \mathcal{T}_j, \mathbf{R}_j \sim \textit{N}\left(\left(\frac{\textit{n}_k}{\sigma^2} + \frac{1}{\sigma_\mu^2}\right)^{-1}\left(\frac{\textit{n}_k \overline{\textit{r}}_{jk}}{\sigma^2}\right), \left(\frac{\textit{n}_k}{\sigma^2} + \frac{1}{\sigma_\mu^2}\right)^{-1}\right)$$

- **2.** Draw $\sigma^2 | \{ (\mathcal{T}_i, \mathcal{M}_i) \}_{i=1}^m, \mathbf{Y}$
 - Perform our Gibbs step by drawing

$$\sigma^{2} | \left\{ \left(\mathcal{T}_{j}, \mathcal{M}_{j} \right) \right\}_{j=1}^{m}, \mathbf{Y} \sim \chi^{-2} \left(\nu + n, \frac{\nu \tau^{2} + ns^{2}}{\nu + n} \right)$$

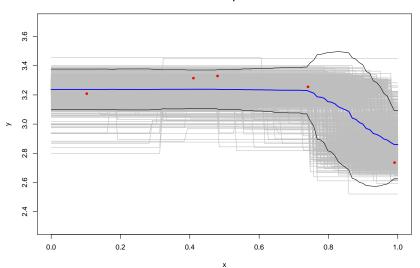
```
source("dace.sim.r")
# Generate response:
set.seed(88)
n=5; k=1; rhotrue=0.2; lambdatrue=1
design=as.matrix(runif(n))
11=list(m1=outer(design[,1],design[,1],"-"))
1.dez=list(11=11)
R=rhogeodacecormat(1.dez,c(rhotrue))$R
L=t(chol(R))
u=rnorm(nrow(R))
z=L%*%u
  Our observed data:
y=as.vector(z)
```

```
library(BayesTree)
preds=matrix(seq(0,1,length=100),ncol=1)
shat=sd(y)
nii=3
q = 0.90
k=2
# Tree prior
m=1
alpha=0.95
beta=2
nc=100
# MCMC settings
N=1000
burn=1000
```

```
##
##
## Running BART with numeric y
##
## number of trees: 1
## Prior.
   k: 2.000000
##
##
    degrees of freedom in sigma prior: 3
##
    quantile in sigma prior: 0.900000
    power and base for tree prior: 2.000000 0.950000
##
##
    use quantiles for rule cut points: 0
##
  data:
    number of training observations: 5
##
```

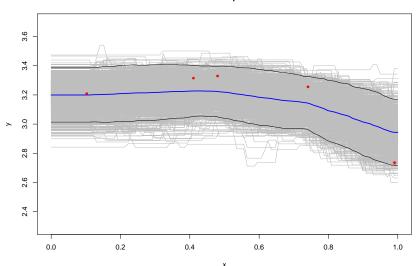
```
plot(design, y, pch=20, col="red", cex=2, xlim=c(0,1),
    ylim=c(2.3,3.7),xlab="x",
    main="Predicted mean response +/- 2s.d.")
for(i in 1:nrow(fit$yhat.test))
  lines(preds,fit$yhat.test[i,],col="grey",lwd=0.25)
mean=apply(fit$yhat.test,2,mean)
sd=apply(fit$yhat.test,2,sd)
lines(preds,mean-1.96*sd,lwd=0.75,col="black")
lines(preds, mean+1.96*sd, lwd=0.75, col="black")
lines(preds,mean,lwd=2,col="blue")
points(design,y,pch=20,col="red")
```

Predicted mean response +/- 2s.d.



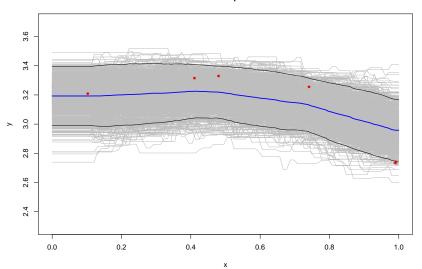
```
Try m=10 trees
m=10
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,
        k=k,power=beta,base=alpha,ntree=m,numcut=nc,
        ndpost=N,nskip=burn)
##
##
  Running BART with numeric y
##
## number of trees: 10
## Prior:
   k: 2.000000
##
##
    degrees of freedom in sigma prior: 3
##
    quantile in sigma prior: 0.900000
    power and base for tree prior: 2.000000 0.950000
##
##
    use quantiles for rule cut points: 0
```

Predicted mean response +/- 2s.d.

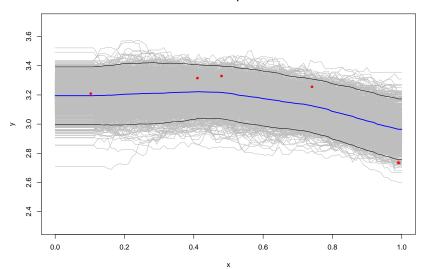


```
Try m=20 trees
m = 20
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,
        k=k,power=beta,base=alpha,ntree=m,numcut=nc,
        ndpost=N,nskip=burn)
##
##
  Running BART with numeric y
##
## number of trees: 20
## Prior:
   k: 2.000000
##
##
    degrees of freedom in sigma prior: 3
##
    quantile in sigma prior: 0.900000
    power and base for tree prior: 2.000000 0.950000
##
##
    use quantiles for rule cut points: 0
```

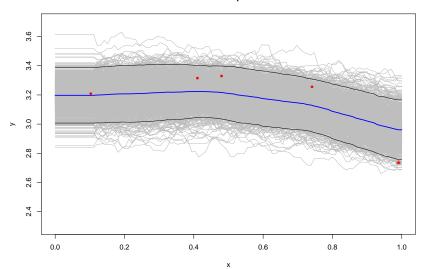
Predicted mean response +/- 2s.d.



```
Try m=100 trees
m = 100
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,
        k=k,power=beta,base=alpha,ntree=m,numcut=nc,
        ndpost=N,nskip=burn)
##
##
  Running BART with numeric y
##
## number of trees: 100
## Prior:
   k: 2.000000
##
##
    degrees of freedom in sigma prior: 3
##
    quantile in sigma prior: 0.900000
    power and base for tree prior: 2.000000 0.950000
##
##
    use quantiles for rule cut points: 0
```

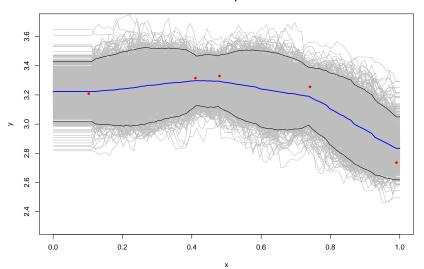


```
Try m=200 trees, the recommended default
m = 200
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,
        k=k,power=beta,base=alpha,ntree=m,numcut=nc,
        ndpost=N,nskip=burn)
##
##
  Running BART with numeric y
##
## number of trees: 200
## Prior:
   k: 2.000000
##
    degrees of freedom in sigma prior: 3
##
##
    quantile in sigma prior: 0.900000
    power and base for tree prior: 2.000000 0.950000
##
##
    use quantiles for rule cut points: 0
```



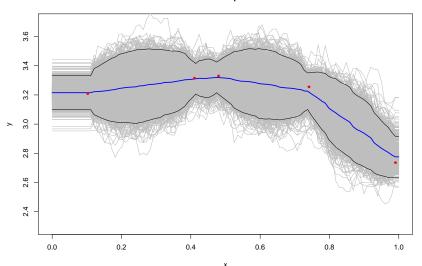
```
##
## Running BART with numeric y
##
## number of trees: 200
## Prior:
## k: 1.000000
## degrees of freedom in sigma prior: 3
## quantile in sigma prior: 0.900000
```

##



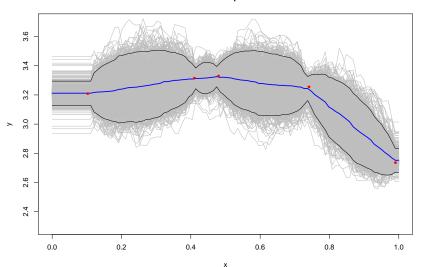
```
# Try m=200 trees, the recommended default
m = 200
# And k=1
k=1
# And nu=3, q=.99
nu=3
q = 0.99
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,
        k=k,power=beta,base=alpha,ntree=m,numcut=nc,
        ndpost=N,nskip=burn)
##
##
   Running BART with numeric y
##
```

number of trees: 200



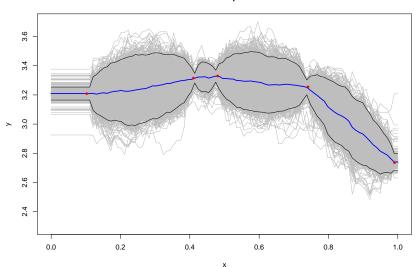
```
# Try m=200 trees, the recommended default
m = 200
# And k=1
k=1
# And nu=2, q=.99
nu=2
q = 0.99
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,
        k=k, power=beta, base=alpha, ntree=m, numcut=nc,
        ndpost=N,nskip=burn)
##
##
   Running BART with numeric y
##
```

number of trees: 200



```
# Try m=200 trees, the recommended default
m = 200
# And k=1
k=1
# And nu=1, q=.99
nu=1
q = 0.99
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,
        k=k,power=beta,base=alpha,ntree=m,numcut=nc,
        ndpost=N,nskip=burn)
##
##
   Running BART with numeric y
##
```

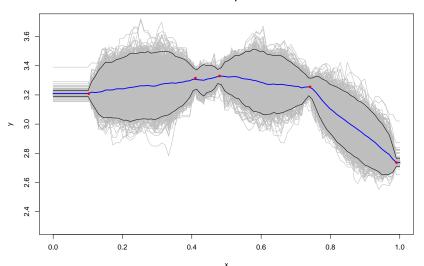
number of trees: 200



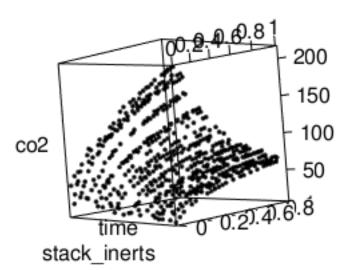
```
Try m=200 trees, the recommended default
m = 200
# And k=1
k=1
# And nu=1, q=.99
nu=1
q = 0.99
# And numcuts=1000
nc=1000
fit=bart(design,y,preds,sigest=shat,sigdf=nu,sigquant=q,
        k=k,power=beta,base=alpha,ntree=m,numcut=nc,
        ndpost=N,nskip=burn)
```

```
## Running BART with numeric y
```

##



```
library(rgl)
load("co2plume.dat")
plot3d(co2plume)
rgl.snapshot("co2a.png")
```



```
y=co2plume$co2
x=co2plume[,1:2]
preds=as.data.frame(expand.grid(seq(0,1,length=20),
        seq(0,1,length=20))
colnames(preds)=colnames(x)
shat=sd(y)
# Try m=200 trees, the recommended default
m = 2.00
# And k=1
k=1
# And nu=1, q=.99
nu=1
q = 0.99
# And numcuts=1000
nc=1000
fit=bart(x,y,preds,sigest=shat,sigdf=nu,sigquant=q,
```

```
plot(fit$sigma,type='l',xlab="Iteration",
    ylab=expression(sigma))
```

