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Basic MCMC Diagnostics

MCMC is an algorithm that generates (approximate) samples
from the posterior distribution of interest.

We would like to check, to some degree, if our samples are any
good.

This is a difficult problem. Most methods in the literature are
univariate.

Run multiple chains: do they agree with eachother?
Run a long chain: is the chain transient or stationary?
Insightful plots are helpful.

Strategy: check for (obvious) ways it might have failed, rather
than checking (guaranteeing) that it worked.



Traceplots

First place to start. This is simply a plot of the sample versus
its index.

Plot should show stationary behavior - constant mean/median,
constant variance, no trend.

Often, this is called the “fat marker” test.

Check the autocorrelation by making an ACF plot. The ACF
should decay rapidly.

= |deally, we want independent draws from the posterior.



source("dace.sim.r")
set.seed(88)

n=10

k=1

rhotrue=0.2
lambdaytrue=1
design=as.matrix(runif(n))

11=1ist (ml=outer(designl[,1] ,design[,1],"-"))
1.dez=list(11=11)

R=rhogeodacecormat (l.dez,c(rhotrue))$R
L=chol (R)

u=rnorm(nrow(R))

z=t (L) %*%u

# now set up our observed data:
==
11=1ist (ml=outer(designl[,1] ,designl[,1],"-"))



Example

source("regression.r")
pi=list(az=5,bz=5,rhoa=rep(1,k),rhob=rep(5,k))

mh=1list(rr=1e-5)

fit=regress(y,l.dez,5000,pi,mh,last=1000,adapt=FALSE)




Example

par (mfrow=c(1,2))
plot(fit$lambdaz,type='1l"',xlab="draw",ylab="lambdaz")

abline (h=lambdaytrue)
plot (fit$rhoz,type='1"',xlab="draw",ylab="rhoz")
abline (h=rhotrue)




Example
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Example

5k draws is usually considered way too small.
Let's repeat with 20,000 iterations.
We'll take last=5,000 iterations.

So adapt would occur for the first 10,000 iterations and further
burn-in up to the 15,000th iteration.

Realistically | would do much greater than this, but compiling
my slides then takes a long time. ..



Example

pi=list(az=5,bz=5,rhoa=rep(1,k),rhob=rep(5,k))

mh=1list(rr=1e-5)

fit=regress(y,1l.dez,20000,pi,mh,last=5000,adapt=FALSE)

##
#Hit
##
#Hit
##
##
##
##t

Bayesian Gaussian Process Interpolation model

The last 4999 samples from the posterior will be rep«
The stepwidth for uniform corr. param proposal distn i:
Prior params: az=5 bz=5



Example

par (mfrow=c(1,2))
plot(fit$lambdaz,type='1l"',xlab="draw",ylab="lambdaz")

abline (h=lambdaytrue)
plot (fit$rhoz,type='1"',xlab="draw",ylab="rhoz")
abline (h=rhotrue)




Example
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Example

par (mfrow=c(1,2))

acf (fit$lambdaz,main="1ambdaz")
acf (fit$rhoz,main="rhoz")
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Single-chain Diagnostics

How many samples should we draw? How many should we
discard as burn-in?

Starting rule of thumb: take total number of draws to be
N = 50, 000.
Discard at least half as burn-in.

More complex the model, the larger number of samples needed
and the longer we need to run the algorithm to burn-in.



Raftery & Lewist

= R&L diagnostic tells us how big to make N based on our needs,
and how much burn-in to throw away.

= Used for single chains. Aims to detect non-convergence to the
stationary distribution.

= Gives us:

= Npin: the minimum total number of iterations that should be
run assuming independent samples.

= M: the suggested number of iterations to discard as burn-in.

= k= N/Npy, : the thinning interval. If we keep every kth
sample we would have approximately independent draws.

A.E. Raftery and S. Lewis (1992): How many iterations in the Gibbs sampler? in
Bayesian Statistics 4, eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith,
Oxford University Press, pp. 763-773.



Raftery & Lewis

= To use R&L, we supply it with 4 numbers: Q, R, S, A.

= @Q: a quantile that we want to estimate.

= R: we want to estimate Q with the precision R.

= S: the S% probability interval associated with the precision R.
= A: a convergence tolerance that is used in determining how

much burn-in to discard.



Raftery & Lewis

= The approach is based on a 2-state Markov Chain and sample
size formulas for a binomial variance.

= Basically, the Markov Chain 6(i),i > 1 is turned into a binary
sequence of indicators B(i),i > 1 that correspond to the event
0(i) < Q, the chosen quantile.

= The algorithm looks for the smallest thinning interval k that
makes the behavior of this sequence of indicators behave as if
it came from an independent 2-state Markov Chain.



Raftery & Lewis

= Burn-in is found as the minimum number of iterations of B(/)
it takes for the chain B(i) to approach within A of its
estimated stationary distribution.

= Npin, the number of samples we need to estimate our quantile
Q@ with the descried precision R at the level S is found using
binomial theory on the chain B(i).



Raftery & Lewis

= The defaults are:

= the quantile @ = 0.025,

= an accuracy (i.e. width of interval for the estimate of Q) of
R = 0.005,

= and a probability of obtaining this accuracy level of S = 95%
(i.e. the interval @ = R needs to correspond to a 95% interval

for Q).

= Npin is the minimum number of samples you will need to
achieve this.

The Raftery& Lewis diagnostic, along with others we will consider here, are available
in the R package CODA available on CRAN. For R& L, see the function raftery.diag().



Example

fit=regress(y,1l.dez,20000,pi,mh,last=20000,adapt=FALS

##
#Hit
##
##
##
##
##
##
##

Bayesian Gaussian Process Interpolation model

The last 19999 samples from the posterior will be rej
The stepwidth for uniform corr. param proposal distn i:
Prior params: az=5 bz=5

0.01 percent complete

0.015 percent complete
0.02 percent complete
0.025 percent complete
0.03 percent complete
0.035 percent complete



Example

raftery.diag(postmemc,q=0.025)

##
## Quantile (q) = 0.025
## Accuracy (r) = +/- 0.005

## Probability (s) = 0.95

##

## Burn-in Total Lower bound Dependence
# (M) () (Nmin) factor (I)
##H 2 3802 3746 1.01

## 312 328604 3746 87.70



Example

raftery.diag(postmemc,q=0.975)

##

## Quantile (q) = 0.975

## Accuracy (r) = +/- 0.005
## Probability (s) = 0.95

##

## Burn-in Total Lower bound Dependence
# (M) () (Nmin) factor (I)
##H 2 3764 3746 1

## 1095 1176480 3746 314



Example

fit2=regress(y,1l.dez,20000,pi,mh,last=20000,adapt=TRU

#Hit
##
##
##
##
##
##
##
##

Bayesian Gaussian Process Interpolation model

The last 19999 samples from the posterior will be rej
The stepwidth for uniform corr. param proposal distn i:
Prior params: az=5 bz= 5

0.01 percent complete

0.015 percent complete
0.02 percent complete
0.025 percent complete
0.03 percent complete



Example
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Example

raftery.diag(postmemc,q=0.025)

##

## Quantile (q) = 0.025

## Accuracy (r) = +/- 0.005
## Probability (s) = 0.95

##

## Burn-in Total Lower bound Dependence
# (M) () (Nmin) factor (I)
##H 12 16053 3746 4.29

## 36 41700 3746 11.10



Example

raftery.diag(postmemc,q=0.975)

##
## Quantile (q) = 0.975
## Accuracy (r) = +/- 0.005

## Probability (s) = 0.95

##

## Burn-in Total Lower bound Dependence
# (M) () (Nmin) factor (I)
##* 9 10977 3746 2.93

## 322 323841 3746 86.40



Example

fit3=regress(y,1l.dez,20000,pi,mh,last=5000,adapt=TRUE)

##
##
##
##
##
##
##
##
#Ht

Bayesian Gaussian Process Interpolation model

The last 4999 samples from the posterior will be repe
The stepwidth for uniform corr. param proposal distn i
Prior params: az=5 bz=5

0.01 percent complete

0.015 percent complete
0.02 percent complete
0.025 percent complete



lambdaz

Example

draw draw
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Raftery & Lewis

library(coda)
post=as.matrix(cbind(fit3$lambdaz,fit3$rhoz))

postmcmc=as .mcmc (post)



Example

raftery.diag(postmemc,q=0.025)

##
## Quantile (q) = 0.025
## Accuracy (r) = +/- 0.005

## Probability (s) = 0.95

##

## Burn-in Total Lower bound Dependence
# (M) () (Nmin) factor (I)
## 3 4558 3746 1.22

## 30 32808 3746 8.76



Example

raftery.diag(postmemc,q=0.975)

##
## Quantile (q) = 0.975
## Accuracy (r) = +/- 0.005

## Probability (s) = 0.95

##

## Burn-in Total Lower bound Dependence
# (M) () (Nmin) factor (I)
##H 2 3803 3746 1.02

## 24 27446 3746 7.33



Geweke Diagnosticy

= Idea is to look at the Markov Chain as a time-series in order to
check for stationarity.

= They look at comparing the mean of € or some function g()
from two disjoint segments of the posterior samples drawn
using the Gibbs Sampler and compare their means to asses
convergence.

= They divide the chain into the first p;% and the last px%
where p; + pp < 1.

= Regard the g(0;)s as a time-series and assume that the MCMC
process and the function g(-) imply the existence of a spectral
density Sg(w) that has no discontinuities at frequency w = 0.

t J. Geweke (1992): Evaluating the Accuracy of Sampling-Based Approaches to the
Calculation of Posterior Moments. in Bayesian Statistics 4, eds. J.M. Bernardo, J.
Berger, A.P. Dawid and A.F.M. Smith, Oxford University Press, pp. 169-193.\

M.K. Cowles and B.P. Carlin (1996): Markov Chain Monte Carlo Convergence
Diagnostics: A Comparative Review, Journal of the American Statistical Association,
vol.91, pp.883—-904.



Geweke Diagnostic

= Under these assumptions, the estimator of E[g(f)] based on n
iterations of the Gibbs sampler,

n
- _ 2ui=1 g(9)
gn - n )

has asymptotic variance

5:(0)

n

= The square-root of S,(0)/n can be used to estimate the
standard error of the mean.

= Geweke calls this estimate the numeric standard error, or NSE,



Geweke Diagnostic

= Geweke statistic compares the means of g(f) using the two
separate parts of the chain p; and p» of size ny, no, say

81(0), 8:(0)

normalized by our s.e. estimates,

V/81(0)/n,1/8:(0)/n

where :Gg are estimates of the spectral density based on a
periodogram estimator.

= |f the ratios p1, p> are held fixed and p; + p» < 1 then by CLT
they show the distribution of this diagnostic approaches N(0, 1)
as n — oo.



Geweke Diagnostic

Suggestion is to use n; = 0.1n and ny; = 0.5n (i.e. p1 = 10%
and py = 50%.)

If we get a p-value of < 0.05 then we reject the hypothesis that
the first p1% and last p»% of the sample have the same mean.

We can discard the first p;% as burn-in and try again. ..



Example

post=as.matrix(cbind(fit$lambdaz,fit$rhoz))

postmcmc=as.mcmc (post)

geweke.diag(post)

##

## Fraction in 1st window
## Fraction in 2nd window
##

## varl var2

## 1.018 -5.580

I
o O
o=



Example

post=as.matrix(cbind(fit2$lambdaz,fit2$rhoz))

postmcmc=as.mcmc (post)

geweke.diag(post)

##

## Fraction in 1st window
## Fraction in 2nd window
##

## varl var2

## -117.8 238.5

I
o O
o=



Example

post=as.matrix(cbind(fit3$lambdaz,fit3$rhoz))

postmcmc=as.mcmc (post)

geweke.diag(post)

##

## Fraction in 1st window
## Fraction in 2nd window
##

## varl var2

## 0.6674 -0.2512

I
o O
o=



Gelman-Rubin{ Diagnostic

= A multi-chain diagnostic — if we start our MCMC from m
different starting points, do they all converge to the same
place?

= Approach is to consider m independent, separate MCMC runs.
Often m = 10.

= We start these runs at extremes of the prior or from a
overdispersed prior.

= The G& R idea is to decompose the variance of all the chains
into a within-chain variance and between-chain variance and
see if there is a significant difference.

t A. Gelman and D. Rubing (1992): Inference from lIterative Simulation Using
Multiple Sequences. Statistical Science, vol. 7, pp.457-511.\

M.K. Cowles and B.P. Carlin (1996): Markov Chain Monte Carlo Convergence
Diagnostics: A Comparative Review, Journal of the American Statistical Association,
vol.91, pp.883—-904.



Gelman-Rubin Diagnostic

After discarding burn-in, first compute
_ 10

(91' = — Z@ji
ni=

for each of the j =1,..., m MCMC runs.

Next calculate average within-chain variance as

WS S 6]

j=1 i=1

Finally calculate the between-chain variance as

B=_"

m

Y.

m—1 - (91 6)
j=1



Gelman-Rubin Diagnostic

= The total estimated variance is
— 1 1
Var(0) = (1 - > W+ —B.
n m

= And the Gelman-Rubin statistic is

—

_ Var(0)
R = W

= We want R to be close to 1. They suggest R > 1.05 indicates
possible problems.

= Univariate, but a multivariate extension existst.

1 S. Brooks and A. Gelman (1998): General methods for monitoring convergence of
iterative simulations. Journal of Computational and Graphical Statistics, vol7,
pp.434—455.



Gelman-Rubin Diagnostic

postdraws=vector("list",6)
for(i in 1:6) postdraws[[i]]=fit[[i]]$rhoz

for(i in 1:6) postdraws[[i]]=as.mcmc(postrows[[i]])
postmulti=as.mcmc.list (postrows)
gelman.diag(postmulti,autoburnin=FALSE)




Effective Sample Size

Calculates how many samples do you effectively have adjusting
for the autocorrelation in your MCMC samples.

If your sampler truly was i.i.d., then you would have N samples.

But since there is usually dependence between samples,
effectively you have < N samples.



Example

post=as.matrix(cbind(fit2$lambdaz,fit2$rhoz))

postmcmc=as.mcmc (post)
effectiveSize (postmcmc)

## varil var?2
## 14.218939 2.878563



Example

post=as.matrix(cbind(fit3$lambdaz,fit3$rhoz))

postmcmc=as.mcmc (post)
effectiveSize (postmcmc)

## varl var?2
## 873.7204 198.3363



